Search results

1 – 10 of over 1000
Article
Publication date: 1 April 1994

Iain D. Craig

Artificial Intelligence, Cybernetics, ProductionDescribes the ELEKTRA reflective production rule interpreter, which differs from other interpreters by providing considerable…

277

Abstract

Artificial Intelligence, Cybernetics, Production Describes the ELEKTRA reflective production rule interpreter, which differs from other interpreters by providing considerable support for meta‐level inference and reflection. Also describes the representations employed in the system, in which the control problem in production systems can be solved by increasing use of rules. Introduces the reflective properties of the system and gives examples. Shows that the interpreter on which the entire ELEKTRA system runs can be implemented as ELEKTRA rules.

Details

Kybernetes, vol. 23 no. 3
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 9 August 2022

Chunyun Zhang, Jie Mei, Yushuai Bai, Miao Cui, Haifeng Peng and X. W. Gao

The purpose of this study is to simultaneously determine the constitutive parameters and boundary conditions by solving inverse mechanical problems of power hardening…

Abstract

Purpose

The purpose of this study is to simultaneously determine the constitutive parameters and boundary conditions by solving inverse mechanical problems of power hardening elastoplastic materials in three-dimensional geometries.

Design/methodology/approach

The power hardening elastoplastic problem is solved by the complex variable finite element method in software ABAQUS, based on a three-dimensional complex stress element using user-defined element subroutine. The complex-variable-differentiation method is introduced and used to accurately calculate the sensitivity coefficients in the multiple parameters identification method, and the Levenberg–Marquardt algorithm is applied to carry out the inversion.

Findings

Numerical results indicate that the complex variable finite element method has good performance for solving elastoplastic problems of three-dimensional geometries. The inversion method is effective and accurate for simultaneously identifying multi-parameters of power hardening elastoplastic problems in three-dimensional geometries, which could be employed for solving inverse elastoplastic problems in engineering applications.

Originality/value

The constitutive parameters and boundary conditions are simultaneously identified for power hardening elastoplastic problems in three-dimensional geometries, which is much challenging in practical applications. The numerical results show that the inversion method has high accuracy, good stability, and fast convergence speed.

Article
Publication date: 21 November 2008

Mengchi Liu

The purpose of this paper is to describe a novel XML schema language called DTD Schema that solves major limitations of document type definition (DTD) and supports features that…

Abstract

Purpose

The purpose of this paper is to describe a novel XML schema language called DTD Schema that solves major limitations of document type definition (DTD) and supports features that XML Schema supports in a simple and concise way.

Design/methodology/approach

DTD Schema is designed based on DTD and data definition language of object‐oriented and object‐relational databases. It extends DTD with namespaces, richer built‐in types and user‐defined subtypes, local elements and attributes, complex types with nonmonotonic multiple element and attribute inheritance with overriding, blocking, conflict handling, and polymorphism.

Findings

XML Schema is recommended by W3C as the schema language for XML. It uses a set of predefined XML tags to define the schema, which is often a long, intricate specification, full of details and concepts and its verbose syntax often doubles or triples the document length. It is so complicated that even XML experts do not find it human‐readable, mostly due to the XML‐based syntax.

Research limitations/implications

The only limitation is that DTD Schema is not in XML. But for the same reason, it is simple and concise.

Practical implications

DTD schema is halfway between DTD and XML Schema and thus it is less complex and much easier for human to use than XML Schema.

Originality/value

DTD Schema supports all functionalities of XML Schema and also the best of object‐oriented features including multiple inheritance, overriding, blocking, conflict handling and polymorphism. Therefore, it is much more expressive than XML Schema.

Details

International Journal of Web Information Systems, vol. 4 no. 4
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 1 May 2006

Rajugan Rajagopalapillai, Elizabeth Chang, Tharam S. Dillon and Ling Feng

In data engineering, view formalisms are used to provide flexibility to users and user applications by allowing them to extract and elaborate data from the stored data sources…

Abstract

In data engineering, view formalisms are used to provide flexibility to users and user applications by allowing them to extract and elaborate data from the stored data sources. Conversely, since the introduction of EXtensible Markup Language (XML), it is fast emerging as the dominant standard for storing, describing, and interchanging data among various web and heterogeneous data sources. In combination with XML Schema, XML provides rich facilities for defining and constraining user‐defined data semantics and properties, a feature that is unique to XML. In this context, it is interesting to investigate traditional database features, such as view models and view design techniques for XML. However, traditional view formalisms are strongly coupled to the data language and its syntax, thus it proves to be a difficult task to support views in the case of semi‐structured data models. Therefore, in this paper we propose a Layered View Model (LVM) for XML with conceptual and schemata extensions. Here our work is three‐fold; first we propose an approach to separate the implementation and conceptual aspects of the views that provides a clear separation of concerns, thus, allowing analysis and design of views to be separated from their implementation. Secondly, we define representations to express and construct these views at the conceptual level. Thirdly, we define a view transformation methodology for XML views in the LVM, which carries out automated transformation to a view schema and a view query expression in an appropriate query language. Also, to validate and apply the LVM concepts, methods and transformations developed, we propose a viewdriven application development framework with the flexibility to develop web and database applications for XML, at varying levels of abstraction.

Details

International Journal of Web Information Systems, vol. 2 no. 2
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 23 July 2021

Bao Qin, Yexin Zhou and Zheng Zhong

A diffusion-reaction-deformation coupled model is employed and implemented as a user-defined element (UEL) subroutine in the commercial finite element software package ABAQUS.

Abstract

Purpose

A diffusion-reaction-deformation coupled model is employed and implemented as a user-defined element (UEL) subroutine in the commercial finite element software package ABAQUS.

Design/methodology/approach

Chemical reaction and diffusion are treated as two distinct processes by introducing the extent of reaction and the diffusion concentration as two kinds of independent variables, for which the independent governing equations for chemical reaction and diffusion processes are obtained. Furthermore, an exponential form of chemical kinetics, instead of the linearly phenomenological relation, between the reaction rate and the chemical affinity is used to describe reaction process. As a result, complex chemical reaction can be simulated, no matter it is around or away from equilibrium.

Findings

Two numerical examples are presented, one for validation of the model and another for the modeling of the deflection of a plane caused by a chemical reaction.

Originality/value

1. Independent governing equations for diffusion and reaction processes are given. 2. An exponential relation between the reaction rate and its driving force is employed. 3. The UEL subroutine is used to implement the finite element procedure.

Details

Engineering Computations, vol. 39 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2000

A. Savini

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community…

1129

Abstract

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community. Observes that computer package implementation theory contributes to clarification. Discusses the areas covered by some of the papers ‐ such as artificial intelligence using fuzzy logic. Includes applications such as permanent magnets and looks at eddy current problems. States the finite element method is currently the most popular method used for field computation. Closes by pointing out the amalgam of topics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 June 2021

Jichang Wang and Xiaoming Guo

A mesoscopic phase field (PF) model is proposed to simulate the meso-failure process of lightweight concrete.

320

Abstract

Purpose

A mesoscopic phase field (PF) model is proposed to simulate the meso-failure process of lightweight concrete.

Design/methodology/approach

The PF damage model is applied to the meso-failure process of lightweight concrete through the ABAQUS subroutine user-defined element (UEL). And the improved staggered iteration scheme with a one-pass procedure is used to alternately solve the coupling equations.

Findings

These examples clearly show that the crack initiation of the lightweight concrete specimens mainly occurs in the ceramsite aggregates with weak strength, especially in the larger aggregates. The crack propagation paths of the specimens with the same volume fraction of light aggregates are completely different, but the crack propagation paths all pass through the ceramsite aggregates near the cracks. The results also showed that with the increase in the volume fractions of the aggregates, the slope and the peak loads of the force-deflection (F-d) curves gradually decrease, the load-bearing capacity of the lightweight concrete specimens decreases, and crack branching and coalescence are less likely during crack propagation.

Originality/value

The mesostructures with a mortar matrix, aggregates and an interfacial transition zone (ITZ) are generated by an automatic generation and placement program, thus incorporating the typical three-phase characteristics of lightweight concrete into the PF model.

Details

Engineering Computations, vol. 38 no. 10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 January 2022

Mina Kohansal Vajargah and Reza Ansari

The paper aims to presents a numerical analysis of free vibration of micromorphic structures subjected to various boundary conditions.

Abstract

Purpose

The paper aims to presents a numerical analysis of free vibration of micromorphic structures subjected to various boundary conditions.

Design/methodology/approach

To accomplish this objective, first, a two-dimensional (2D) micromorphic formulation is presented and the matrix representation of this formulation is given. Then, two size-dependent quadrilateral and triangular elements are developed within the commercial finite element software ABAQUS. User element subroutine (UEL) is used to implement the micromorphic elements. These non-classical elements are capable of capturing the micro-structure effects by considering the micro-motion of materials. The effects of the side length-to-length scale parameter ratio and boundary conditions on the vibration behavior of 2D micro-structures are discussed in detail. The reliability of the present finite element method (FEM) is confirmed by the convergence studies and the obtained results are validated with the results available in the literature. Also, the results of micromorphic theory (MMT) are compared with those of micropolar and classical elasticity theories.

Findings

The study found that the size effect becomes very significant when the side length of micro-structures is close to the length scale parameter.

Originality/value

The study is to analyze the free vibrations of 2D micro-structures based on MMT; to develop a 2D formulation for micromorphic continua within ABAQUS; to propose quadrilateral and triangular micromorphic elements using UEL and to investigate size effects on the vibrational behavior of micro-structures with various geometries.

Details

Engineering Computations, vol. 39 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 May 2015

Debasis Deb, Ranjan Pramanik and Kamal Ch Das

– The purpose of this paper is to analyse of structures made in rock mass with multiple intersecting discrete discontinuities such as joint, fault, shear plane.

397

Abstract

Purpose

The purpose of this paper is to analyse of structures made in rock mass with multiple intersecting discrete discontinuities such as joint, fault, shear plane.

Design/methodology/approach

In this study, a numerical method is proposed for analyzing multiple intersecting joints with varying dip angles, spacing and roughness in eXtended Finite Element Method platform. A procedure is also outlined to treat excavated enhanced (jointed) elements for analysing the effect of excavation sequences.

Findings

The proposed method is compared with the existing interface element methods (Phase-2 model) by considering the stress and displacement distributions of a multiple intersecting jointed rock sample under uniaxial loading conditions. A circular tunnel in rock mass having intersecting joints is also analyzed for the distribution of mobilised friction angle of joints and results are compared with a derived analytical solution.

Research limitations/implications

Nucleation and propagation of cracks should be incorporated into the proposed framework in future studies.

Practical implications

The proposed method is a useful tool for rock mechanics and geotechnical engineering problems to analyse strength and deformability of jointed rock masses.

Originality/value

The paper enumerates concepts and detail implementation procedures of the proposed method in three-noded triangular elements. The intersection of joints is formulated in such a way that no additional (junction) enrichment is required in model. The method has been improved for inclusion of Dirichlet and Neumann boundary conditions to be applied in the enhanced part of a problem domain.

Details

Engineering Computations, vol. 32 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 August 2014

A. Pirondi, G. Giuliese and F. Moroni

In this work, the cohesive zone model (CZM) developed by some of the authors to simulate the propagation of fatigue defects in two dimensions is extended in order to simulate the…

Abstract

Purpose

In this work, the cohesive zone model (CZM) developed by some of the authors to simulate the propagation of fatigue defects in two dimensions is extended in order to simulate the propagation of defects in 3D. The paper aims to discuss this issue.

Design/methodology/approach

The procedure has been implemented in the finite element (FE) solver (Abaqus) by programming the appropriate software-embedded subroutines. Part of the procedure is devoted to the calculation of the rate of energy release per unit, G, necessary to know the growth of the defect.

Findings

The model was tested on different joint geometries, with different load conditions (pure mode I, mode II pure, mixed mode I/II) and the results of the analysis were compared with analytical solutions or virtual crack closure technique (VCCT).

Originality/value

The possibility to simulate the growth of a crack without any re-meshing requirements and the relatively easy possibility to manipulate the constitutive law of the cohesive elements makes the CZM attractive also for the fatigue crack growth simulation. However, differently from VCCT, three-dimensional fatigue de-bonding/delamination with CZM is not yet state-of-art in FE softwares.

Details

International Journal of Structural Integrity, vol. 5 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 1000