Search results

1 – 10 of over 11000
Article
Publication date: 27 April 2022

Qixin Zhu, Yusheng Jin and Yonghong Zhu

The purpose of this paper is to propose a new acceleration/deceleration (acc/dec) algorithm for motion profiles. The motion efficiency, flexibility of the motion profiles and the…

Abstract

Purpose

The purpose of this paper is to propose a new acceleration/deceleration (acc/dec) algorithm for motion profiles. The motion efficiency, flexibility of the motion profiles and the residual vibration of the movement are discussed in this paper.

Design/methodology/approach

A dynamics model is developed to assess the residual vibration of these two kinds of motion profile. And a Simulink model is created to assess the motion efficiency and flexibility of the motion profiles with the proposed acc/dec algorithm.

Findings

Considering the flexibility of trigonometric motion profiles and the higher motion efficiency of S-curve motion profiles, the authors add the polynomial parts into the jerk profile of the cosine function acc/dec algorithm to hold the jerk when it reaches the maximum so that the motion efficiency can increase and decrease residual vibration at the same time. And the cyclical parameter k shows the decisive factor for the flexibility of trigonometric motion profiles.

Originality/value

Comparing with the traditional motion profiles, the proposed motion profiles have higher motion efficiency and excite less residual vibration. The acc/dec algorithm proposed in this paper is useful for the present motion control and servo system.

Details

Assembly Automation, vol. 42 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 April 1953

ONE of the highlights of British production in recent years has been the enormous advances made in aircraft design and production and the consequent lead given us in the market…

Abstract

ONE of the highlights of British production in recent years has been the enormous advances made in aircraft design and production and the consequent lead given us in the market for commercial airliners. This has been achieved despite the fact that up to 75 per cent of the total cost of an airliner may be spent on labour.

Details

Work Study, vol. 2 no. 4
Type: Research Article
ISSN: 0043-8022

Article
Publication date: 1 November 2003

Zezhong C. Chen, Zuomin Dong and Geoffrey W. Vickers

The objective of CNC machining is to produce mechanical parts with designed quality most efficiently. To generate CNC tool paths for machining a sculptured part using a three‐axis…

1285

Abstract

The objective of CNC machining is to produce mechanical parts with designed quality most efficiently. To generate CNC tool paths for machining a sculptured part using a three‐axis CNC machine, surface geometry, cutter shape and size, as well as tool path interval and direction need to be considered. In this work, the relation between the direction of a tool motion and cutting efficiency is studied. A new measure of cutting efficiency in three‐axis CNC milling – the length of effective cutting edge (ECE) is introduced. The ECE length is mathematically proven to reach its maximum when the tool cuts a sculptured surface along its steepest tangent direction at the cutter contact point. The steepest tangent direction is thus proven to be the most efficient tool feed direction in three‐axis sculptured part machining. The study identifies tool feed direction as a new control parameter in CNC tool path planning, and forms the foundation for further research on three‐axis tool path generation of sculptured parts.

Details

Integrated Manufacturing Systems, vol. 14 no. 7
Type: Research Article
ISSN: 0957-6061

Keywords

Article
Publication date: 26 April 2013

Dominik Belter and Piotr Skrzypczynski

The purpose of this paper is to describe a novel application of the recently introduced concept from computer vision to self‐localization of a walking robot in unstructured…

Abstract

Purpose

The purpose of this paper is to describe a novel application of the recently introduced concept from computer vision to self‐localization of a walking robot in unstructured environments. The technique described in this paper enables a walking robot with a monocular vision system (single camera) to obtain precise estimates of its pose with regard to the six degrees of freedom. This capability is essential in search and rescue missions in collapsed buildings, polluted industrial plants, etc.

Design/methodology/approach

The Parallel Tracking and Mapping (PTAM) algorithm and the Inertial Measurement Unit (IMU) are used to determine the 6‐d.o.f. pose of a walking robot. Bundle‐adjustment‐based tracking and structure reconstruction are applied to obtain precise camera poses from the monocular vision data. The inclination of the robot's platform is determined by using IMU. The self‐localization system is used together with the RRT‐based motion planner, which allows to walk autonomously on rough, previously unknown terrain. The presented system operates on‐line on the real hexapod robot. Efficiency and precision of the proposed solution are demonstrated by experimental data.

Findings

The PTAM‐based self‐localization system enables the robot to walk autonomously on rough terrain. The software operates on‐line and can be implemented on the robot's on‐board PC. Results of the experiments show that the position error is small enough to allow robust elevation mapping using the laser scanner. In spite of the unavoidable feet slippages, the walking robot which uses PTAM for self‐localization can precisely estimate its position and successfully recover from motion execution errors.

Research limitations/implications

So far the presented self‐localization system was tested in limited‐scale indoor experiments. Experiments with more realistic outdoor scenarios are scheduled as further work.

Practical implications

Precise self‐localization may be one of the most important factors enabling the use of walking robots in practical USAR missions. The results of research on precise self‐localization in 6‐d.o.f. may be also useful for autonomous robots in other application areas: construction, agriculture, military.

Originality/value

The vision‐based self‐localization algorithm used in the presented research is not new, but the contribution lies in its implementation/integration on a walking robot, and experimental evaluation in the demanding problem of precise self‐localization in rough terrain.

Details

Industrial Robot: An International Journal, vol. 40 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 June 2005

X.J. Wu, Q. Li and K.H. Heng

Aim for efficient motion planning of industrial robot with high degree of freedoms in both static and dynamic environments.

Abstract

Purpose

Aim for efficient motion planning of industrial robot with high degree of freedoms in both static and dynamic environments.

Design/methodology/approach

A multi‐agent based general path planner for serial manipulator is proposed in this work. A hierarchical structure developed based on fuzzy reasoning is employed in the planner. The high level in the hierarchical structure is designed to dynamically assign each link an appropriate behaviour and the low level is designed to determine the joint speed according to the behaviours assigned by the high level.

Findings

Combination of multi‐agent concept and fuzzy reasoning approach can obtain both flexibility and efficiency in motion planning of serial manipulator with high degree of freedoms.

Research limitations/implications

Multiple local minima problem occurred in complex manipulation scenario has not yet been considered.

Practical implications

Applicable for real time motion planning of serial industrial robots with high degrees of freedom in 3D space.

Originality/value

In this research work, we make use of the of multi‐agent plus fuzzy logic concept to design a novel manipulator motion path planner, in particular, we introduce a novel mechanism into the fuzzy logic algorithm with the “back‐tracking” ability to avoid the local minima problem.The proposed motion planner has advantages on low computational cost, the suitability for real time path planning in 3D space and the capability to escape simple local minima.

Details

Industrial Robot: An International Journal, vol. 32 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 July 2022

Xiaolong Yang, Long Zheng, Da Lü, Jinhao Wang, Shukun Wang, Hang Su, Zhixin Wang and Luquan Ren

Snake-inspired robots are of great significance in many fields because of their great adaptability to the environment. This paper aims to systematically illustrate the research…

1064

Abstract

Purpose

Snake-inspired robots are of great significance in many fields because of their great adaptability to the environment. This paper aims to systematically illustrate the research progress of snake-inspired robots according to their application environments. It classifies snake-inspired robots according to the numbers of degrees of freedom in each joint and briefly describes the modeling and control of snake-inspired robots. Finally, the application fields and future development trends of snake-inspired robots are analyzed and discussed.

Design/methodology/approach

This paper summarizes the research progress of snake-inspired robots and clarifies the requirements of snake-inspired robots for self-adaptive environments and multi-functional tasks. By equipping various sensors and tool modules, snake-inspired robots are developed from fixed-point operation in a single environment to autonomous operation in an amphibious environment. Finally, it is pointed out that snake-inspired robots will be developed in terms of rigid and flexible deformable structure, long endurance and multi-function and intelligent autonomous control.

Findings

Inspired by the modular and reconfigurable concepts of biological snakes, snake-inspired robots are well adapted to unknown and changing environments. Therefore, snake-inspired robots will be widely used in industrial, military, medical, post-disaster search and rescue applications. Snake-inspired robots have become a hot research topic in the field of bionic robots.

Originality/value

This paper summarizes the research status of snake-inspired robots, which facilitates the reader to be a comprehensive and systematic understanding of the research progress of snake-inspired robots. This helps the reader to gain inspiration from biological perspectives.

Details

Assembly Automation, vol. 42 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 3 September 2019

Joaquin Ortega-Casanova and Ramon Fernandez-Feria

This paper aims to consider the thrust force generated by two plunging and pitching plates in a tandem configuration in forward flight to find out the configuration that maximizes…

Abstract

Purpose

This paper aims to consider the thrust force generated by two plunging and pitching plates in a tandem configuration in forward flight to find out the configuration that maximizes the propulsive efficiency with high-enough time-averaged lift force.

Design/methodology/approach

To that end, the Navier–Stokes equations for the incompressible and two-dimensional flow at Reynolds number $500 are solved. As the number of parameters is quite large, the case of constant separation between the plates (half their chord length), varying seven non-dimensional parameters related to the phase shift between the heaving motion of the foils, the phase lag between pitch and heave of each plate independently and the frequency and amplitude of the heaving and pitching motions are considered. This analysis complements some other recent studies where the separation between the foils has been used as one of the main control parameters.

Findings

It is found that the propulsive efficiency is maximized for a phase shift of 180° (counterstroking), when the reduced frequency is 2.2 and the Strouhal number based on half the plunging amplitude is 0.17, the pitching amplitude is 25° and when pitch leads heave by 135° in both the fore -plate and the hind plate. The propulsive efficiency is about 20 per cent, just a bit larger than that of an isolate plate with the same motion as the fore-plate, but the corresponding lift force is negligible for a single plate. The paper discusses this vortical flow structure in relation to other less efficient ones. Finally, the effect of the separation between the plates and the Reynolds number is also briefly discussed.

Originality/value

The kinematics of two flapping plates in tandem configuration that maximizes the propulsive efficiency are characterized discussing physically the associated vortical flow structures in comparison with less efficient kinematic configurations. A much larger number of parameters in the optimization procedure than in previous related works is considered.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 1956

YET another book relating to industrial engineering arrives from the United States. Why is it that no English author ever writes a book about new developments in work study? All…

39

Abstract

YET another book relating to industrial engineering arrives from the United States. Why is it that no English author ever writes a book about new developments in work study? All the tomes on industrial engineering come from across the Atlantic Ocean. Is it because no one has the initiative, or is it the lack of “know‐how”? A combination of the two, no doubt. We have complained before of the indolent attitude of work study technicians, and we shall complain again—they are completely pen‐shy!

Details

Work Study, vol. 5 no. 8
Type: Research Article
ISSN: 0043-8022

Article
Publication date: 9 July 2020

Ting Pan, Jiaqing Yan, Shenyun Zhou, Yingjie Cai and Congda Lu

The purpose of this paper is to propose the situation that the existing parking automated guided vehicle (AGV) has a single walking mode, a spin forward motion mode based on a…

Abstract

Purpose

The purpose of this paper is to propose the situation that the existing parking automated guided vehicle (AGV) has a single walking mode, a spin forward motion mode based on a dual steering wheel driven parking AGV. In this way, the AGV can complete the 180° spin of the AGV in the process of straight forward.

Design/methodology/approach

A spin forward kinematics model of the dual steering wheel AGV is established, and a motion controller of the dual steering wheel AGV is designed based on the principle of model predictive control to complete the path following the spin forward motion mode.

Findings

Computer simulations and laboratory tests were performed on this movement mode, which showed that the operation mode was feasible. It also verified that the mode can improve the handling efficiency, and also solved the problem that the parking space beside the wall could not be set and the site utilization was improved.

Research limitations/implications

The controller should be further improved to make the operation smoother and more accurate.

Practical implications

This mode has the applicability to the indoor logistics AGVs. In addition, it can improve the handling efficiency and also solved the problem that the storage space for goods beside the wall could not be set and the site utilization was improved.

Social implications

This method can solve the problem due to the increasing number of private cars and parking spaces are hard to find. It increases the number of parking spaces and improves the utilization rate of the site. In addition, it also saves people the time to find a parking space and reduces car exhaust emissions in the process. It follows the requirements of sustainable development.

Originality/value

The studies in this paper provide AGV with more ideas on the issue of improving handling efficiency and site utilization and also solves the problem of being unable to set parking spaces when parking against the wall. In addition, this model has applicability to indoor logistics AGV and plays the same role.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 July 1956

MODERN work study technique demands that the methods engineer and the time study engineer work hand in hand for the benefit of productivity as a whole. And to state the obvious it…

Abstract

MODERN work study technique demands that the methods engineer and the time study engineer work hand in hand for the benefit of productivity as a whole. And to state the obvious it is becoming clearer that time and motion are indivisible.

Details

Work Study, vol. 5 no. 7
Type: Research Article
ISSN: 0043-8022

1 – 10 of over 11000