Search results

11 – 20 of over 31000
Article
Publication date: 17 July 2023

Faisal Mehraj Wani, Jayaprakash Vemuri and Rajaram Chenna

The objective of the study is to examine the response of reinforced concrete (RC) structures subjected to Near-Fault Ground Motions (NFGM) and highlight the importance of…

130

Abstract

Purpose

The objective of the study is to examine the response of reinforced concrete (RC) structures subjected to Near-Fault Ground Motions (NFGM) and highlight the importance of considering various factors including the influence of the relative geographical position of near-fault sites that can affect the structural response during an earthquake.

Design/methodology/approach

In this paper, the response of a four-storey RC building subjected to NFGMs with varied characteristics like hanging wall and footwall in conjunction with directivity and the effect of pulse-like ground motions with rupture direction are investigated to understand the combined influence of these factors on the behavior of the structure. Furthermore, the capacity and demand of the structural element are investigated for computing the performance ratio.

Findings

Results from this study indicate that the most unfavorable combinations for structural damage due to near-fault ground motion are the hanging wall with forward rupture, the fault normal component of ground motions, and pulse-like ground motions with forward directivity.

Originality/value

The results from this study provide valuable insight into the response of RC structures subjected to NFGM and highlight the importance of considering various factors that can affect the structural response during an earthquake. Moreover, the computation of capacity and demand of the critical beam indicates exceedance of desired limits, resulting in the early deterioration of the structural elements. Finally, the analytical analysis from the present study confirms that the hanging wall with forward ruptures, pulse-like motions, and fling steps are the most unfavorable combinations for seismic structural damage.

Details

International Journal of Structural Integrity, vol. 14 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 January 2006

Miran Saje and Dejan Zupan

The motion of a disk spinning on a horizontal surface has drawn a great deal of interest recently. The objectives of the researches are to find out what produces an increasing…

Abstract

The motion of a disk spinning on a horizontal surface has drawn a great deal of interest recently. The objectives of the researches are to find out what produces an increasing rattling sound and why the spinning ends so abruptly. In order to understand the behaviour of the spinning disk better, we derived a mathematical model of the rolling/sliding motion of a thin, rigid disk on a rigid, rough horizontal plane, and found the numerical solution of the related initial value problem. Then we studied the motion of the commercially available Tangent Toy disk [3]. The results show that the normal contact force becomes very large whenever the inclination of the disk becomes small. As the inclination of the disk oscillates with time, the time‐graph of the normal contact force exhibits periodical peaks, which correlate well with the peaks in the recorded sound response. They could well be responsible for the rattling sound heard during the motion.

Details

Multidiscipline Modeling in Materials and Structures, vol. 2 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 July 1958

MUCH has been written about industrial engineering, especially in regard to American practice, but a good deal of confusion still exists about the whole subject.

Abstract

MUCH has been written about industrial engineering, especially in regard to American practice, but a good deal of confusion still exists about the whole subject.

Details

Work Study, vol. 7 no. 7
Type: Research Article
ISSN: 0043-8022

Article
Publication date: 27 April 2022

Qixin Zhu, Yusheng Jin and Yonghong Zhu

The purpose of this paper is to propose a new acceleration/deceleration (acc/dec) algorithm for motion profiles. The motion efficiency, flexibility of the motion profiles and the…

Abstract

Purpose

The purpose of this paper is to propose a new acceleration/deceleration (acc/dec) algorithm for motion profiles. The motion efficiency, flexibility of the motion profiles and the residual vibration of the movement are discussed in this paper.

Design/methodology/approach

A dynamics model is developed to assess the residual vibration of these two kinds of motion profile. And a Simulink model is created to assess the motion efficiency and flexibility of the motion profiles with the proposed acc/dec algorithm.

Findings

Considering the flexibility of trigonometric motion profiles and the higher motion efficiency of S-curve motion profiles, the authors add the polynomial parts into the jerk profile of the cosine function acc/dec algorithm to hold the jerk when it reaches the maximum so that the motion efficiency can increase and decrease residual vibration at the same time. And the cyclical parameter k shows the decisive factor for the flexibility of trigonometric motion profiles.

Originality/value

Comparing with the traditional motion profiles, the proposed motion profiles have higher motion efficiency and excite less residual vibration. The acc/dec algorithm proposed in this paper is useful for the present motion control and servo system.

Details

Assembly Automation, vol. 42 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Open Access
Article
Publication date: 18 January 2021

Hongxing Wang, LianZheng Ge, Ruifeng Li, Yunfeng Gao and Chuqing Cao

An optimal solution method based on 2-norm is proposed in this study to solve the inverse kinematics multiple-solution problem caused by a high redundancy. The current research…

1202

Abstract

Purpose

An optimal solution method based on 2-norm is proposed in this study to solve the inverse kinematics multiple-solution problem caused by a high redundancy. The current research also presents a motion optimization based on the 2-Norm of high-redundant mobile humanoid robots, in which a kinematic model is designed through the entire modeling.

Design/methodology/approach

The current study designs a highly redundant humanoid mobile robot with a differential mobile platform. The high-redundancy mobile humanoid robot consists of three modular parts (differential driving platform with two degrees of freedom (DOF), namely, left and right arms with seven DOF, respectively) and has total of 14 DOFs. Given the high redundancy of humanoid mobile robot, a kinematic model is designed through the entire modeling and an optimal solution extraction method based on 2-norm is proposed to solve the inverse kinematics multiple solutions problem. That is, the 2-norm of the angle difference before and after rotation is used as the shortest stroke index to select the optimal solution. The optimal solution of the inverse kinematics equation in the step is obtained by solving the minimum value of the objective function of a step. Through the step-by-step cycle in the entire tracking process, the kinematic optimization of the highly redundant humanoid robot in the entire tracking process is realized.

Findings

Compared with the before and after motion optimizations based on the 2-norm algorithm of the robot, its motion after optimization shows minimal fluctuation, improved smoothness, limited energy consumption and short path during the entire mobile tracking and operating process.

Research limitations/implications

In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot.

Practical implications

In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot.

Social implications

In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot.

Originality/value

Motion optimization based on the 2-norm of a highly redundant humanoid mobile robot with the entire modeling is performed on the basis of the entire modeling. This motion optimization can make the highly redundant humanoid mobile robot’s motion path considerably short, minimize energy loss and shorten time. These researches provide a theoretical basis for the follow-up research of the service robot, including tracking and operating target, etc. Finally, the motion optimization algorithm is verified by the tracking and operating behaviors of the robot and an example.

Details

Assembly Automation, vol. 41 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 8 March 2011

Matthew Field, Zengxi Pan, David Stirling and Fazel Naghdy

The purpose of this paper is to provide a review of various motion capture technologies and discuss the methods for handling the captured data in applications related to robotics.

1656

Abstract

Purpose

The purpose of this paper is to provide a review of various motion capture technologies and discuss the methods for handling the captured data in applications related to robotics.

Design/methodology/approach

The approach taken in the paper is to compare the features and limitations of motion trackers in common use. After introducing the technology, a summary is given of robotic‐related work undertaken with the sensors and the strengths of different approaches in handling the data are discussed. Each comparison is presented in a table. Results from the author's experimentation with an inertial motion capture system are discussed based on clustering and segmentation techniques.

Findings

The trend in methodology is towards stochastic machine learning techniques such as hidden Markov model or Gaussian mixture model, their extensions in hierarchical forms and non‐linear dimension reduction. The resulting empirical models tend to handle uncertainty well and are suitable for incrementally updating models. The challenges in human‐robot interaction today include expanding upon generalising motions to understand motion planning and decisions and build ultimately context aware systems.

Originality/value

Reviews including descriptions of motion trackers and recent methodologies used in analyzing the data they capture are not very common. Some exist, as has been pointed out in the paper, but this review concentrates more on applications in the robotics field. There is value in regularly surveying the research areas considered in this paper due to the rapid progress in sensors and especially data modeling.

Details

Industrial Robot: An International Journal, vol. 38 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 July 1956

MODERN work study technique demands that the methods engineer and the time study engineer work hand in hand for the benefit of productivity as a whole. And to state the obvious it…

Abstract

MODERN work study technique demands that the methods engineer and the time study engineer work hand in hand for the benefit of productivity as a whole. And to state the obvious it is becoming clearer that time and motion are indivisible.

Details

Work Study, vol. 5 no. 7
Type: Research Article
ISSN: 0043-8022

Article
Publication date: 15 June 2012

Wei You, Minxiu Kong, Lining Sun and Yanbin Diao

The purpose of this paper is to present a control system for a heavy duty industrial robot, including both the control structure and algorithm, which was designed and tested.

1252

Abstract

Purpose

The purpose of this paper is to present a control system for a heavy duty industrial robot, including both the control structure and algorithm, which was designed and tested.

Design/methodology/approach

An industrial PC with TwinCAT real‐time system is chosen as the motion control unit; EtherCAT is used for command transmission. The whole system has a decoupled and centralized control structure. A novel optimal motion generation algorithm based on modified cubic spline interpolation is illustrated. The execution time and work were chosen as the objective function. The constraints are the limits of torque, velocity and jerk. The motion commands were smooth enough throughout the execution period. By using the Lagangue equation and assumed modes methods, a dynamic model of heavy duty industrial robots is built considering the elastic of both joints and links. After that a compound control algorithm based on singular perturbation theory was designed for the servo control loop.

Findings

The final experimental results showed that the control commands and algorithms could easily be calculated and transmitted in one sample unit. Both the motion generation and servo control algorithm greatly improved the control performance of the robot.

Research limitations/implications

All parts of the control algorithm can be computed on‐line except the optimal motion generation part. The motion generation part is time consuming (about 2.5 seconds), which can only be performed off‐line. Hence future work will focus on improving the efficiency of this algorithm; therefore it could be performed online, increasing the robot's overall robustness and adaptability.

Originality/value

Aiming at the internal and external causes that limit the dynamic performance of heavy duty industrial robots, this paper proposes a realizable scheme of control system and includes both the control structure and algorithms. A novel optimal motion generation algorithm is presented.

Article
Publication date: 11 June 2019

Muhammad Yahya, Jawad Ali Shah, Kushsairy Abdul Kadir, Zulkhairi M. Yusof, Sheroz Khan and Arif Warsi

Motion capture system (MoCap) has been used in measuring the human body segments in several applications including film special effects, health care, outer-space and under-water…

1559

Abstract

Purpose

Motion capture system (MoCap) has been used in measuring the human body segments in several applications including film special effects, health care, outer-space and under-water navigation systems, sea-water exploration pursuits, human machine interaction and learning software to help teachers of sign language. The purpose of this paper is to help the researchers to select specific MoCap system for various applications and the development of new algorithms related to upper limb motion.

Design/methodology/approach

This paper provides an overview of different sensors used in MoCap and techniques used for estimating human upper limb motion.

Findings

The existing MoCaps suffer from several issues depending on the type of MoCap used. These issues include drifting and placement of Inertial sensors, occlusion and jitters in Kinect, noise in electromyography signals and the requirement of a well-structured, calibrated environment and time-consuming task of placing markers in multiple camera systems.

Originality/value

This paper outlines the issues and challenges in MoCaps for measuring human upper limb motion and provides an overview on the techniques to overcome these issues and challenges.

Details

Sensor Review, vol. 39 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 June 2010

Oscar Salgado, Oscar Altuzarra, Fernando Viadero and Alfonso Hernández

The purpose of this paper is to provide a general approach to compute, determine, and characterize the connectivity of the end‐effector of a robotic manipulator of arbitrary…

Abstract

Purpose

The purpose of this paper is to provide a general approach to compute, determine, and characterize the connectivity of the end‐effector of a robotic manipulator of arbitrary architecture, in any of the postures that it can reach.

Design/methodology/approach

The types of motion of this link, i.e. translational, screw motions, combinations thereof, and self‐motions, are first defined and determined, simplifying the understanding of the instantaneous behaviour of the manipulator, aided by the definition of an alternative input basis.

Findings

The characterization provided by this paper simplifies the understanding of the instantaneous behaviour of the manipulator. The mobility of the end‐effector is completely characterized by the principal screws of its motion, which can be obtained from a generalized eigenproblem. In the process, alternative demonstrations of well‐known properties of the principal screws are provided.

Research limitations/implications

The approach presented is focused on the kinetostatic analysis of manipulators, and therefore, subjected to rigid body assumption.

Practical implications

This paper proposes effective approaches for engineering analysis of robotic manipulators.

Originality/value

This approach is based on a pure theoretical kinematic analysis that can characterize computationally the motion that the end‐effector of an industrial robot of general morphology (i.e. serial, parallel, hybrid manipulators, complex mechanisms, redundant or non‐redundantly actuated). Also, being implemented on a general‐purpose software for the kinematic analysis of mechanisms, it provides visual information of the motion capabilities of the manipulator, highly valuable on its design stages.

Details

Engineering Computations, vol. 27 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

11 – 20 of over 31000