Search results

1 – 10 of over 1000
Article
Publication date: 6 June 2016

Bingsheng Xu, Yan Wu, Lina Zhang, Junwei Chen and Zhangfu Yuan

This research aims to provide a theoretical method and data supports for a future study on interfacial reaction mechanism and spreading mechanism between molten solder and…

207

Abstract

Purpose

This research aims to provide a theoretical method and data supports for a future study on interfacial reaction mechanism and spreading mechanism between molten solder and V-shaped substrate, which also gives guidance for those complicated welding operation objects in brazing technique.

Design/methodology/approach

Wetting experiments were performed to measure the contact angles at different temperatures of molten Sn-3.0Ag-0.5Cu wetting on the quartz substrate with an included angle of 90°. According to the experimental results, the theoretical spreading morphology of molten solder on V-shaped substrate at corresponding temperature was simulated by Surface Evolver.

Findings

The theoretical morphology profiles of the molten solder sitting on the V-shaped substrate are simulated using Surface Evolver when the molten solder reaches spreading equilibrium. The spreading mechanisms as well as the impact of surface tension and gravity on interfacial energy of the molten solder wetting on the V-shaped groove substrate are also discussed where theoretical results agree well with experiment results. The contact area between the gas and liquid phases shows a tendency of first increasing and later decreasing. Otherwise, the spreading distance and the height of the molten solder increases as the droplet volume increases as the included angle and the contact angle are given as constants, and both the interfacial energy and the gravitational energy increase as well. This research has a wide influence on predicting the outcomes in commercial impact and also gives guidance for those complicated welding operation objects in brazing technique.

Research limitations/implications

It is of very important significance in both science and practice to investigate the differences between the flat surface and V-shaped surface. Some necessary parameters including intrinsic contact angle and surface tension need to be directly measured when the droplet spreads on the flat surface. The relevant simulation conclusions on the inherent characteristics can be given based on these intrinsic parameters. Compared with the flat surface, the V-shaped substrate is chosen for further discuss on the effects of gravity on the droplet spreading behavior and the changes of apparent contact angle which can only occurs as the substrate is inclined. Therefore, this research provides theoretical method and data supports for a future study on interfacial reaction mechanism and spreading mechanism between molten solder and substrate.

Practical implications

The research is developed for verifying the accuracy of the model built in Surface Evolver. Based on this verified model, other researches on the spreading distance along y-axis and the contact area that are especially difficult to be experimentally measured can be directly simulated by Surface Evolver, which can provides a convenient method to discuss the changes of horizontal spreading distance, droplet height and contact area with increasing the included angle of V-shaped substrate or with increasing the droplet volume. Actually, the modeling results are calculated for supplying the theoretical parameters and technical guidance in the welding process.

Social implications

This research provides theoretical method and data supports for a future study on interfacial reaction mechanism and spreading mechanism between molten solder and substrate, which has a wide influence on prediction the outcomes in commercial impact and also gives guidance for those complicated welding operation objects in brazing technique.

Originality/value

Surface Evolver, can also be used to discuss the structure and spreading mechanism of droplets on V-shaped substrates, which have not been discussed before.

Details

Soldering & Surface Mount Technology, vol. 28 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 March 1999

Paul T. Vianco

An overview has been presented on the topic of alternative surface finishes for package I/Os and circuit board features. Aspects of processability and solder joint reliability…

1345

Abstract

An overview has been presented on the topic of alternative surface finishes for package I/Os and circuit board features. Aspects of processability and solder joint reliability were described for the following coatings: baseline hot‐dipped, plated, and plated‐and‐fused 100Sn and Sn‐Pb coatings; Ni/Au; Pd, Ni/Pd, and Ni/Pd/Au finishes; and the recently marketed immersion Ag coatings. The Ni/Au coatings appear to provide the all‐around best options in terms of solderability protection and wire bondability. Nickel/Pd finishes offer a slightly reduced level of performance in these areas which is most likely due to variable Pd surface conditions. It is necessary to minimize dissolved Au or Pd contents in the solder material to prevent solder joint embrittlement. Ancillary aspects that include thickness measurement techniques; the importance of finish compatibility with conformal coatings and conductive adhesives; and the need for alternative finishes for the processing of non‐Pb bearing solders are discussed.

Details

Circuit World, vol. 25 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 June 2015

M.S. Abdul Aziz, M.Z. Abdullah, C.Y. Khor, M. Mazlan, A.M. Iqbal and Z.M. Fairuz

The purpose of this paper is to present a three-dimensional finite volume-based analysis on the effects of propeller blades on fountain flow in a wave soldering process and…

Abstract

Purpose

The purpose of this paper is to present a three-dimensional finite volume-based analysis on the effects of propeller blades on fountain flow in a wave soldering process and performs an experimental validation.

Design/methodology/approach

Solder pot models with various numbers of propeller blades were developed and meshed by using hybrid elements and simulated by using the FLUENT fluid flow solver. The characteristics of the fountain, such as flow profile, velocity vector, filling time, and fountain advancement, were investigated. Molten solder (Sn63Pb37) material, a temperature of 250°C, and a propeller speed of 830 rpm were applied in the simulation. The predicted results were validated by the experimental fountain profile.

Findings

The use of a six-blade propeller in a solder pot increased the fountain thickness profile and reduced the filling time. Moreover, a six-blade propeller design resulted in a stable fountain profile and was considered the best choice for current wave soldering processes.

Practical implications

This study provides a better understanding of the effects of propeller blades on the fountain flow in the wave soldering process.

Originality/value

The study explores the fountain flow behavior and provides a reference to the engineers and designers in order to improve the fountain flow of the wave soldering.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 May 2014

Mohd Sharizal Abdul Aziz, Mohd Zulkifly Abdullah and Chu Yee Khor

– The aim of this study is to investigate the effects of offset angle in wave soldering by using thermal fluid structure interaction modeling with experimental validation.

Abstract

Purpose

The aim of this study is to investigate the effects of offset angle in wave soldering by using thermal fluid structure interaction modeling with experimental validation.

Design/methodology/approach

The authors used a thermal coupling approach that adopted mesh-based parallel code coupling interface between finite volume-and finite element-based software (ABAQUS). A 3D single pin-through-hole (PTH) connector with five offset angles (0 to 20°) on a printed circuit board (PCB) was built and meshed by using computational fluid dynamics preprocessing software called GAMBIT. An implicit volume of fluid technique with a second-order upwind scheme was also applied to track the flow front of solder material (Sn63Pb37) when passing through the solder pot during wave soldering. The structural solver and ABAQUS analyzed the temperature distribution, displacement and von Mises stress of the PTH connector. The predicted results were validated by the experimental solder profile.

Findings

The simulation revealed that the PTH offset angle had a significant effect on the filling of molten solder through the PCB. The 0° angle yielded the best filling profile, filling time, lowest displacement and thermal stress. The simulation result was similar to the experimental result.

Practical implications

This study provides a better understanding of the process control in wave soldering for PCB assembly.

Originality/value

This study provides fundamental guidelines and references for the thermal coupling method to address reliability issues during wave soldering. It also enhances understanding of capillary flow and PTH joint issues to achieve high reliability in PCB assembly industries.

Details

Soldering & Surface Mount Technology, vol. 26 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 January 1989

R.J. Klein Wassink and J.A.H. van Gerven

During reflow soldering the applied solder paste is melted and the components, previously placed on the solder paste, move into their final position. This process, however, may be…

Abstract

During reflow soldering the applied solder paste is melted and the components, previously placed on the solder paste, move into their final position. This process, however, may be accompanied by various unwanted movements of components and solder. Components may move horizontally along the surface of the board (this is called swimming or floating), or may move vertically and stand on their ends (this is called drawbridging or Manhattan effect). On the other hand, the molten solder may move to places other than those intended, e.g., into metallised holes (PTH) connected to the solder lands, or upwards along component leads away from the joint area; this effect is called solder wicking. Moreover, isolated small solder balls are often found on the board surface after melting of the paste. Experiments show that all these effects depend on the heating method, vapour phase soldering often being the most prone. The driving forces of the displacements can be explained in terms of forces and pressure caused by the surface tension of the molten solder, whereas the observed influences of the heating method are the result of the direction from which the heat is transported to the solder paste to be melted. From this, important conclusions for vapour phase soldering, infra‐red soldering and hot‐belt soldering may be drawn.

Details

Soldering & Surface Mount Technology, vol. 1 no. 1
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 18 September 2009

D. Di Maio and C.P. Hunt

The purpose of this paper is to investigate the various factors that influence the dissolution of copper in molten solder, paying particular attention to important parameters…

Abstract

Purpose

The purpose of this paper is to investigate the various factors that influence the dissolution of copper in molten solder, paying particular attention to important parameters: temperature, solder composition and flow rate.

Design/methodology/approach

To determine the dissolution rate of copper in lead‐free solders, a simple and automated technique is developed. This methodology provides repeatable measurements that allow the various experimental parameters to be isolated. Factors that greatly affect the dissolution rate of copper, such as soldering temperature, flow rate and solder composition, are taken into account. Particular attention is paid to the flow rate of the molten solder. In fact, different alloys at the same temperature can have considerably different flow rates, owing to their different viscosities at that temperature. The dissolution rates of copper in seven lead‐free alloys and the Sn‐Pb alloy are compared at 255, 275 and 300°C.

Findings

It is observed that generally the samples with a thicker intermetallic layer are those that exhibit a longer dissolution time.

Originality/value

The transition from tin‐lead to lead‐free increases the tendency for copper dissolution in molten solders, clearly representing a serious risk to circuit reliability. This paper presents the many advantages of a method for comparing the dissolution rate of copper with different solder alloys.

Details

Soldering & Surface Mount Technology, vol. 21 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 8 June 2022

Daniel Dzivy and Alena Pietrikova

The purpose of this paper is to show a possibility to measure a change of a contact angle during the melting in real-time and to reveal significant factors of a wettability…

Abstract

Purpose

The purpose of this paper is to show a possibility to measure a change of a contact angle during the melting in real-time and to reveal significant factors of a wettability. Influence of the flux with combination of plasma on copper surface was investigated in experiment as well.

Design/methodology/approach

Laboratory equipment consists of heating and optical part that was developed and tested for real-time contact angle’s measurements. Solder balls based on Sn96.5/Ag3/Cu0.5 and Sn63Pb37 spread out on a copper substrate during a melting process. The wettability of pure copper surface was compared with copper surface treated with flux or combination plasma–flux. The contact angle and spreading rate of a melted solder balls observed by the charged-coupled device camera were analyzed in real-time and measured using the JavaScript.

Findings

Laboratory equipment allows for analysis of contact angle and spreading rate in real-time during the melting process. The contact angle decreases more noticeable after applying the plasma-flux treatment in contrast to no flux or flux treatment only. Using the plasma treatment before application of the flux improves the wettability and the effectivity of the flux activity on the copper surface during the melting process.

Originality/value

The interpretation of the results of such a comprehensive measurement leads to a better understanding of the mutual relation between flux and combination plasma–flux of the wetting during the melting process. The simple, cheap, fast and accurate laboratory equipment, which consists of the heating and the optical part, allows for the wettability evaluation of the melting process in real-time.

Details

Microelectronics International, vol. 39 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 August 2003

Yanhong Tian, Chunqing Wang, Xiaodong Zhang and Deming Liu

In this paper, the interaction kinetics between eutectic PbSn solder and Au/Ni/Cu metallisation of plastic ball grid array packages during laser reflow bumping were investigated…

Abstract

In this paper, the interaction kinetics between eutectic PbSn solder and Au/Ni/Cu metallisation of plastic ball grid array packages during laser reflow bumping were investigated. The effects of processing variables, including laser reflow power and time, on the morphology of the intermetallic compounds formed at the solder/pad interface were studied by scanning electron microscopy and energy dispersive X‐ray spectrometry. Furthermore, dissolution and diffusion of Au and Sn inside the solder bump within the duration of the laser heating was analysed by Auger electron spectroscopy (AES). The results reveal that the morphology of the intermetallic compounds was strongly influenced by the laser input energy. The AES results showed that Au atoms dissolved rapidly into the solder after the solder was melted.

Details

Soldering & Surface Mount Technology, vol. 15 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 28 June 2011

M.M. Arafat, A.S.M.A. Haseeb and Mohd Rafie Johan

In electronic packaging, when solid copper comes in contact with liquid solder alloy, the former dissolves and intermetallic compounds (IMCs) form at the solid‐liquid interface…

Abstract

Purpose

In electronic packaging, when solid copper comes in contact with liquid solder alloy, the former dissolves and intermetallic compounds (IMCs) form at the solid‐liquid interface. The purpose of this paper is to study the effect of the presence of molybdenum nanoparticles on the dissolution of copper and the formation of interfacial IMC.

Design/methodology/approach

Cu wire having a diameter of 250 μm is immersed in liquid composite solders at 250°C up to 15 min. Composite solder was prepared by adding various amount of Mo nanoparticles into the Sn‐3.8Ag‐0.7Cu (SAC) solder paste. The dissolution behavior of Cu substrate is studied for SAC and Mo nanoparticles added SAC solders. The IMCs and its microstructure between the solder and substrate are analyzed by using conventional scanning electron microscope (SEM) and field emission SEM. The elemental analysis was done by using energy‐dispersive X‐ray spectroscopy.

Findings

Generally, the dissolution of the substrate increases with increasing immersion time but decreases with the increase of the content of Mo nanoparticles in the solder. The IMC thickness increases with increasing the reaction time but Mo nanoparticles can hinder the growth of IMC layer. The presence of Mo nanoparticle is found to be effective in reducing the dissolution of copper into SAC solder.

Originality/value

The paper shows that molybdenum nanoparticles in liquid SAC solders have a prominent effect on the substrate dissolution rate and the interfacial IMC between the SAC solder and copper substrate.

Details

Soldering & Surface Mount Technology, vol. 23 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 9 February 2010

J. Mittal and K.L. Lin

The purpose of this paper is to visualise the activities of three solders; Sn‐37Pb, Sn‐9Zn and Sn‐3.5Ag on Cu substrates during reflow near their melting points and to relate them…

Abstract

Purpose

The purpose of this paper is to visualise the activities of three solders; Sn‐37Pb, Sn‐9Zn and Sn‐3.5Ag on Cu substrates during reflow near their melting points and to relate them with reflow reactions between solder and substrate.

Design/methodology/approach

Melting activities of three solders near their melting points on copper substrates are visualised in an infrared reflow furnace.

Findings

Solder balls demonstrate different ways of melting and reflowing behaviours in dissimilar times and temperature intervals. Melting of Sn‐9Zn solder balls is initiated simultaneously at the surface and joint between solder balls. This is followed by the melting at the joint between solder balls and the Cu substrate. During melting, solder balls are first merged into each other and then reflow on the substrate from top to bottom. Opposite to Sn‐9Zn, Sn‐3.5Ag solder balls start to melt at the surface and the joint between the solder and substrate, simultaneously. Balls are first reflowed from top to bottom and, in the process, liquid solder is merged. Unlike Sn‐9Zn and Sn‐3.5 Ag, melting of Sn‐37Pb solder balls is initially commenced at the surface only. This is followed by simultaneous melting at both joints. Variation in melting activities of these solders is found to be closely related to the coalescence mechanism of solder balls and the reflow reactions between the solders and the Cu substrate.

Originality/value

The elementary melting activities of different solders on Cu substrates is related with their reflow behaviours. This provides better understanding of solder behaviour and selection of good lead‐free solder for applications in the electronic industry.

Details

Soldering & Surface Mount Technology, vol. 22 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of over 1000