Search results

1 – 10 of 174
Article
Publication date: 24 June 2024

Shahala Sheikh, Lalsingh Khalsa and Vinod Varghese

The influence of the temperature discrepancy parameter and higher order of the time-derivative is discussed. Classical coupled and generalized hygrothermoelasticity models are…

Abstract

Purpose

The influence of the temperature discrepancy parameter and higher order of the time-derivative is discussed. Classical coupled and generalized hygrothermoelasticity models are recovered by considering the various special cases and illustrated graphically.

Design/methodology/approach

The theory of integral transformations has been used to study a new hygrothermal model that includes higher-order time derivatives with three-phase-lags and memory-dependent derivatives (MDD). This model considers the microscopic structure’s influence on a non-simple hygrothermoelastic infinitely long cylinder. The generalized Fourier and Fick’s law was adopted to derive the linearly coupled partial differential equations with higher-order time-differential with the two-phase lag model, including memory-dependent derivatives for the hygrothermal field. The investigation of microstructural interactions and the subsequent hygrothermal change has been undertaken as a result of the delay time and relaxation time translations.

Findings

These two-phase-lag models are also practically applicable in modeling nanoscale heat and moisture transport problems applied to almost all important devices. This work will enable future investigators to gain insight into non-simple hygrothermoelasticity with different phase delays of higher order in detail.

Originality/value

To the best of my knowledge, and after completing an intensive search of the relevant literature, the author could not learn any published research that presents a general solution for a higher-order time-fractional three-phase-lag hygrothermoelastic infinite circular cylinder with memory memory-dependent derivative.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Open Access
Article
Publication date: 22 July 2024

Alessandro Bove, Fulvio Lieske, Flaviana Calignano and Luca Iuliano

Material extrusion (MEX) is one of the most known techniques in the additive manufacturing (AM) sector to produce components with a wide range of polymeric and composite…

Abstract

Purpose

Material extrusion (MEX) is one of the most known techniques in the additive manufacturing (AM) sector to produce components with a wide range of polymeric and composite materials. Moisture causes alterations in material properties and for filaments strongly hygroscopic like nylon-based composites this means greater ease of deterioration. Drying the filament to reduce the moisture content may not be sufficient if the humidity is not controlled during printing. The purpose of this study is to achieve the recovery of a commercial nylon-based composite filament by applying process optimization using an open source MEX machine.

Design/methodology/approach

A statistical approach based on Taguchi’s method allowed to achieve an ultimate tensile strength (UTS). A verification of the geometrical capabilities of the process has been performed according to the standard ISO/ASTM 52902-2019. Chemical tests were also carried out to test the resistance to corrosion in acid and basic solutions.

Findings

An UTS of 71.37 MPa was obtained, significantly higher than the value declared by the filament’s manufacturer (Stratasys Inc., USA). The best configuration of process parameters leads to good geometrical deviations for flat surfaces, in a range of 0.01 and 0.38 for flatness, while cylindrical faces showed more important deviations from the nominal values. The good applicability of the material in corrosive environments has been confirmed.

Originality/value

This study examined the performance restoration potential of a nylon composite filament that was significantly affected by storage conditions. For the filament manufacturer, if the material remains in ambient air for an hour or idle in the machine for more than 24 h, the material may no longer be suitable for printing. The study highlighted that the drying of the filament must not be temporary but constant to guarantee printability, and, by acting on the process parameters, it is possible to obtain better mechanical properties than declared by the manufacturer.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 July 2024

Fatma Burcu Karakoç, Nilgün Ertaş and Mine Aslan

The utilization of oilseeds in food formulations is prevalent due to their health benefits and nutritional value. These protein-rich oilseeds serve as an affordable and essential…

Abstract

Purpose

The utilization of oilseeds in food formulations is prevalent due to their health benefits and nutritional value. These protein-rich oilseeds serve as an affordable and essential source of nutrients and bioactive compounds, fulfilling human protein requirements. As such, this study sought to investigate the impact of partially replacing wheat flour with oilseeds in different proportions on the nutritional and quality characteristics of biscuits.

Design/methodology/approach

Oilseeds, including terebinth, sesame and flaxseed, were partially substituted with wheat flour in amounts of 0, 5, 10, 15, 20 and 25%. The effects of this substitution on the storage stability, nutritional content and physical properties of the resulting biscuits were examined.

Findings

The L* (from 69.75 to 54.06) and b* (from 28.59 to 21.60) color values of biscuits decreased with the supplement of oilseeds. The oilseeds addition increased the protein, fat, energy, and ash values of biscuits. At the highest level of added terebinth, sesame and flaxseed, respectively, the amounts measured were 5984.62 mgGAE/kg, 1553.85 mgGAE/kg and 2169.23 mgGAE/kg, which were higher than the control biscuits (715.39 mgGAE/kg). The incorporation of oilseeds resulted in a substantial decrease in pH and peroxide values, while the moisture content was increased throughout the 6-month storage period. The use of terebinth in biscuits led to better oxidative stability than sesame and flaxseed-containing samples. The biscuit samples with terebinth had a longer induction time. The lowest induction time of biscuits with 25% flaxseed was chosen, approximately 3.5 h.

Research limitations/implications

Oilseed flours, which are rich in lipids, have been shown to enhance the quality of biscuits. However, further studies could aim to reduce the amount of shortening used to improve their quality even further. Reducing the shortening could keep the lipid content at an acceptable amount, especially considering consumers' current expectations for low-fat foods.

Practical implications

Plant-based bioactive are generally known as secondary metabolites and have promising therapeutic attributes, especially antioxidative properties.

Social implications

Thanks to this composition, some of these seeds have proven effective in controlling and preventing metabolic diseases (hypertension, hypercholesterolemia, diabetes, coronary heart disease and several types of cancer) as well as providing interesting properties to foods.

Originality/value

As result, oilseeds can be successfully used as functional and sustainable food ingredients to improve the functional, nutritional and storage stability of biscuits.

Details

British Food Journal, vol. 126 no. 8
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 5 December 2023

Balamurali Kanagaraj, N. Anand, Johnson Alengaram and Diana Andrushia

The present work focuses on evaluating the physical and mechanical characteristics of geopolymer concrete (GPC) by replacing the sodium silicate waste (SSW) in place of…

Abstract

Purpose

The present work focuses on evaluating the physical and mechanical characteristics of geopolymer concrete (GPC) by replacing the sodium silicate waste (SSW) in place of traditional river sand. The aim is to create eco-friendly concrete that mitigates the depletion of conventional river sand and conserves natural resources. Additionally, the study seeks to explore how the moisture content of filler materials affects the performance of GPC.

Design/methodology/approach

SSW obtained from the sodium silicate industry was used as filler material in the production of GPC, which was cured at ambient temperature. Instead of the typical conventional river sand, SSW was substituted at 25 and 50% of its weight. Three distinct moisture conditions were applied to both river sand and SSW. These conditions were classified as oven dry (OD), air dry (AD) and saturated surface dry (SSD).

Findings

As the proportion of SSW increased, there was a decrease in the slump of the GPC. The setting time was significantly affected by the higher percentage of SSW. The presence of angular-shaped SSW particles notably improved the compressive strength of GPC when replacing a portion of the river sand with SSW. When exposed to elevated temperatures, the performance of the GPC with SSW exhibited similar behavior to that of the mix containing conventional river sand, but it demonstrated a lower residual strength following exposure to elevated temperatures.

Originality/value

Exploring the possible utilization of SSW as a substitute for river sand in GPC, and its effects on the performance of the proposed mix. Analyzing, how varying moisture conditions affect the performance of GPC containing SSW. Evaluating the response of the GPC with SSW exposed to elevated temperatures in contrast to conventional river sand.

Details

Journal of Structural Fire Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 26 June 2024

Hyunah Cho, Simon Kang, Kimberly Zhao, Vrashabh Sugandhi and George Melissinos

Prototyping with affordable 3D printers empowers small businesses to create prototypes within a day and carry out multiple iterations of design, size, shape or assembly based on…

Abstract

Purpose

Prototyping with affordable 3D printers empowers small businesses to create prototypes within a day and carry out multiple iterations of design, size, shape or assembly based on analytical results, bringing better products to market faster. This paper aims to turn the ideas into proofs of concept, advance these concepts to realistic prototypes and investigate the quality of printed prototypes prior to large-scale production.

Design/methodology/approach

The experimental approach focuses on the prototyping of portable medicine containers by Fused Deposition Modeling (FDM), modifying the prototypes by adding auxiliary braille flags that indicate patient initials and dosing information, and performing the moisture permeation study as well as the stability study for model drug products (i.e. ibuprofen tablets, guaifenesin tablets, dextromethorphan HBr soft gel capsules).

Findings

The study shows that an affordable 3D printer helps to create functional and visual prototypes that give a realistic depiction of the design and offer physical objects that could be investigated for product quality and feasibility.

Originality/value

To the best of the authors’ knowledge, this study was the first attempt to use a desktop FDM-based 3D printer to prototype portable medicine containers in a blister packet appearance with auxiliary braille flags that help validate early concepts and facilitate the conversation on refining product features in a rapid and affordable manner.

Details

Rapid Prototyping Journal, vol. 30 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 17 September 2024

Nzita Alain Lelo, P. Stephan Heyns and Johann Wannenburg

Steam explosions are a major safety concern in many modern furnaces. The explosions are sometimes caused by water ingress into the furnace from leaks in its high-pressure (HP…

Abstract

Purpose

Steam explosions are a major safety concern in many modern furnaces. The explosions are sometimes caused by water ingress into the furnace from leaks in its high-pressure (HP) cooling water system, coming into contact with molten matte. To address such safety issues related to steam explosions, risk based inspection (RBI) is suggested in this paper. RBI is presently one of the best-practice methodologies to provide an inspection schedule and ensure the mechanical integrity of pressure vessels. The application of RBIs on furnace HP cooling systems in this work is performed by incorporating the proportional hazards model (PHM) with the RBI approach; the PHM uses real-time condition data to allow dynamic decision-making on inspection and maintenance planning.

Design/methodology/approach

To accomplish this, a case study is presented that applies an HP cooling system data with moisture and cumulated feed rate as covariates or condition indicators to compute the probability of failure and the consequence of failure (CoF), which is modelled based on the boiling liquid-expanding vapour explosion (BLEVE) theory.

Findings

The benefit of this approach is that the risk assessment introduces real-time condition data in addition to time-based failure information to allow improved dynamic decision-making for inspection and maintenance planning of the HP cooling system. The work presented here comprises the application of the newly proposed methodology in the context of pressure vessels, considering the important challenge of possible explosion accidents due to BLEVE as the CoF calculations.

Research limitations/implications

This paper however aims to optimise the inspection schedule on the HP cooling system, by incorporating PHM into the RBI methodology, as was recently proposed in the literature by Lelo et al. (2022). Moisture and cumulated feed rate are used as covariate. At the end, risk mitigation policy is suggested.

Originality/value

In this paper, the proposed methodology yields a dynamically calculated quantified risk, which emphasised the imperative for mitigating the risk, as well as presents a number of mitigation options, to quantifiably affect such mitigation.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 5
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 16 July 2024

Tarun Pal Singh, Arun Kumar Verma, Vincentraju Rajkumar, Ravindra Kumar, Manoj Kumar Singh and Manish Kumar Chatli

Goat milk yoghurt differs from cow milk yoghurt in that it has a different casein composition and content, which presents several technical challenges, including consistency with…

Abstract

Purpose

Goat milk yoghurt differs from cow milk yoghurt in that it has a different casein composition and content, which presents several technical challenges, including consistency with an appropriate flavor.

Design/methodology/approach

In this study, the antioxidant potential and phytochemical profiling of the fruits (pineapple and papaya) and vegetable (carrot) extracts was evaluated and the effect of their purees on the quality and stability of stirred goat milk yoghurt (GMY) were investigated. The qualities of stirred GMY with carrot (CrY), pineapple (PaY) and papaya (PpY) purees were assessed against the product without puree (CY).

Findings

The carrot puree had the highest moisture, ash contents and pH value. The carrot extract had the highest DPPH radical scavenging activity, while the pineapple extract had the highest total phenolic value (1.59 µg GAE/g) and flavonoids content (0.203 µg CE/g). The scanning of all the puree extracts in GC-MS indicated that 5-hydroxymethylfurfural was a major component. The phytochemical quantification of the extracts through multiple reaction monitoring (MRM) against 16 compounds showed the presence of sinapic acid, cinnamic acid, pthalic acid, ferulic acid, 4-OH-benzoic acid, 3-OH-benzoic acid, p-coumaric acid, caffeic acid and vanillic acid in different quantities. The addition of purees and storage period had a significant (p < 0.05) effect on the moisture, pH, titratable acidity, syneresis, viscosity, color values and sensory properties of the products. In all the samples after 15 days of storage, Streptococcus thermophilus and Lactobacillus bulgaricus counts remained above the recommended level of 106CFU/g. Stirred GMY sample produced with pineapple puree showed a higher syneresis and viscosity, but the CrY sample demonstrated the highest antioxidant activity. The developed formulations remained stable with minimum changes in quality and sensory attribute during refrigerated storage for 10 days.

Originality/value

This study suggests that addition of fruit and vegetable improve the viscosity and sensory perception of the product with minimal use of synthetic flavor and preservatives.

Details

British Food Journal, vol. 126 no. 9
Type: Research Article
ISSN: 0007-070X

Keywords

Open Access
Article
Publication date: 28 June 2024

Ebere Donatus Okonta and Farzad Rahimian

The purpose of this study is to investigate and analyse the potential of existing buildings in the UK to contribute to the net-zero emissions target. Specifically, it aims to…

Abstract

Purpose

The purpose of this study is to investigate and analyse the potential of existing buildings in the UK to contribute to the net-zero emissions target. Specifically, it aims to address the significant emissions from building fabrics which pose a threat to achieving these targets if not properly addressed.

Design/methodology/approach

The study, based on a literature review and ten (10) case studies, explored five investigative approaches for evaluating building fabric: thermal imaging, in situ U-value testing, airtightness testing, energy assessment and condensation risk analysis. Cross-case analysis was used to evaluate both case studies using each approach. These methodologies were pivotal in assessing buildings’ existing condition and energy consumption and contributing to the UK’s net-zero ambitions.

Findings

Findings reveal that incorporating the earlier approaches into the building fabric showed great benefits. Significant temperature regulation issues were identified, energy consumption decreased by 15% after improvements, poor insulation and artistry quality affected the U-values of buildings. Implementing retrofits such as solar panels, air vents, insulation, heat recovery and air-sourced heat pumps significantly improved thermal performance while reducing energy consumption. Pulse technology proved effective in measuring airtightness, even in extremely airtight houses, and high airflow and moisture management were essential in preserving historic building fabric.

Originality/value

The research stresses the need to understand investigative approaches’ strengths, limitations and synergies for cost-effective energy performance strategies. It emphasizes the urgency of eliminating carbon dioxide (CO2) and greenhouse gas emissions to combat global warming and meet the 1.5° C threshold.

Details

Urbanization, Sustainability and Society, vol. 1 no. 1
Type: Research Article
ISSN: 2976-8993

Keywords

Article
Publication date: 15 April 2024

Rilwan Kayode Apalowo, Mohamad Aizat Abas, Zuraihana Bachok, Mohamad Fikri Mohd Sharif, Fakhrozi Che Ani, Mohamad Riduwan Ramli and Muhamed Abdul Fatah bin Muhamed Mukhtar

This study aims to investigate the possible defects and their root causes in a soft-termination multilayered ceramic capacitor (MLCC) when subjected to a thermal reflow process.

Abstract

Purpose

This study aims to investigate the possible defects and their root causes in a soft-termination multilayered ceramic capacitor (MLCC) when subjected to a thermal reflow process.

Design/methodology/approach

Specimens of the capacitor assembly were subjected to JEDEC level 1 preconditioning (85 °C/85%RH/168 h) with 5× reflow at 270°C peak temperature. Then, they were inspected using a 2 µm scanning electron microscope to investigate the evidence of defects. The reliability test was also numerically simulated and analyzed using the extended finite element method implemented in ABAQUS.

Findings

Excellent agreements were observed between the SEM inspections and the simulation results. The findings showed evidence of discontinuities along the Cu and the Cu-epoxy layers and interfacial delamination crack at the Cu/Cu-epoxy interface. The possible root causes are thermal mismatch between the Cu and Cu-epoxy layers, moisture contamination and weak Cu/Cu-epoxy interface. The maximum crack length observed in the experimentally reflowed capacitor was measured as 75 µm, a 2.59% difference compared to the numerical prediction of 77.2 µm.

Practical implications

This work's contribution is expected to reduce the additional manufacturing cost and lead time in investigating reliability issues in MLCCs.

Originality/value

Despite the significant number of works on the reliability assessment of surface mount capacitors, work on crack growth in soft-termination MLCC is limited. Also, the combined experimental and numerical investigation of reflow-induced reliability issues in soft-termination MLCC is limited. These cited gaps are the novelties of this study.

Details

Microelectronics International, vol. 41 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 13 August 2024

Sofien Benltoufa, Hind Algamdy, Adel Ghith, Faten Fayala and Lubos Hes

The paper aims to investigate the dynamic measurement of the water vapour resistance. The water vapour diffusion kinetics depends on the fibre’s material. So, water vapour…

Abstract

Purpose

The paper aims to investigate the dynamic measurement of the water vapour resistance. The water vapour diffusion kinetics depends on the fibre’s material. So, water vapour resistance measurement times till the equilibrium steady state can vary in the case of natural fibres compared to synthetic fibres. Devices for determining water vapour resistance according to the ISO 11092 standard allow static values to be measured.

Design/methodology/approach

In this study to investigate the dynamic of the water vapour resistance, a new parameter named “holding period” was introduced and defined as the time from sample placement on the measuring head until the measuring process begins. The holding period was varied as 0, 30, 60, 90, 120, 180, 240 and 300 s. Wool and cotton knitted fabrics were tested as natural fibres and compared to 100% polyester and 90% polyester/10% elastane as synthetic fibres. Measurements were conducted under both air velocities of 1 and 2 m/s. The experimental test data were statistically analysed based on ANOVA and four-in-one residual plots.

Findings

Statistical analysis of experimental tests shows that the holding period affects water vapour resistance in both air velocities of 1 and 2 m/s and on the measured values in the case of hydrophilic fibres.

Research limitations/implications

The study of the dynamic relative water vapour permeability of natural and synthetic is an important area of interest for future research.

Practical implications

It is recommended to hold the samples on the top of the head measurement before starting the test.

Originality/value

Following the ISO 11092 standard, the static values of the water vapour resistance were measured without considering the dynamic behaviour of the water vapour diffusion through the textile fabrics. This paper fulfils an experimental dynamic measurement of the water vapour resistance.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 174