Search results

1 – 10 of 293
Open Access
Article
Publication date: 24 September 2019

Aboubakar Seddik Bouchikhi

The purpose of this paper is to introduce a numerical investigation used to calculate the J-integral of the main crack behavior emanating from a semicircular notch and double…

1173

Abstract

Purpose

The purpose of this paper is to introduce a numerical investigation used to calculate the J-integral of the main crack behavior emanating from a semicircular notch and double semicircular notch and its interaction with another crack which may occur in various positions in (TiB/Ti) functionally graded material (FGM) plate subjected to tensile mechanical load.

Design/methodology/approach

For this purpose the variations of the material properties are applied at the integration points and at the nodes by implementing a subroutine USDFLD in the ABAQUS software. The variation of the J-integral according to the position, the length and the angle of rotation of cracks is demonstrated. The variation of the J-integral according to the position, the length and the angle of rotation of cracks is examined; also the effect of different parameters for double notch FGM plate is investigated as well as the effect of band of FGM within the ceramic plate to reduce J-integral.

Findings

According to the numerical analysis, all parameters above played an important role in determining the J-integral.

Originality/value

The present study consists in investigating the simulation used to calculate the J-integral of the main crack behavior emanating from a semicircular notch and double semicircular notch and its interaction with another crack which may occur in various positions in (TiB/Ti) FGM plate under Mode I. The J-integral is determined for various load applied. The cracked plate is joined by bonding an FGM layer to TiB plate on its double side. The determination of the gain on J-integral by using FGM layer is highlighted. The calculation of J-integral of FGM’s involves the direction of the radius of the notch in order to reduce the J-integral.

Details

International Journal of Structural Integrity, vol. 10 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 31 December 2019

Shuji Tomaru and Akiyuki Takahashi

Since the most of structures and structural components suffers from cyclic loadings, the study on the fatigue failure due to the crack growth has a great importance. The purpose…

Abstract

Purpose

Since the most of structures and structural components suffers from cyclic loadings, the study on the fatigue failure due to the crack growth has a great importance. The purpose of this paper is to present a three-dimensional fatigue crack growth simulation of embedded cracks using s-version finite element method (SFEM). Using the numerical results, the validity of the fitness-for-service (FFS) code evaluation method is verified.

Design/methodology/approach

In this paper, three-dimensional fatigue crack propagation analysis of embedded cracks is performed using the SFEM. SFEM is a numerical analysis method in which the shape of the structure is represented by a global mesh, and cracks are modeled by local meshes independently. The independent global and local meshes are superimposed to obtain the displacement solution of the problem simultaneously.

Findings

The fatigue crack growth of arbitrary shape of cracks is slow compared to that of the simplified circular crack and the crack approximated based on the FFS code of the Japan Society of Mechanical Engineers (JSME). The results tell us that the FFS code of JSME can provide a conservative evaluation of the fatigue crack growth and the residual life time.

Originality/value

This paper presents a three-dimensional fatigue crack growth simulation of embedded cracks using SFEM. Using this method, it is possible to apply mixed mode loads to complex shaped cracks that are closer to realistic conditions.

Details

International Journal of Structural Integrity, vol. 11 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 23 August 2013

Deepayan Gope, Prakash Chandra Gope and Aruna Thakur

This paper aims to deal with the study of interaction between multiple cracks in an aluminum alloy under static loading. Self-similar as well as non-self-similar crack growth has…

Abstract

Purpose

This paper aims to deal with the study of interaction between multiple cracks in an aluminum alloy under static loading. Self-similar as well as non-self-similar crack growth has been observed which depends on the relative crack positions defined by crack offset distance and crack tip distance. On the basis of experimental observations, the conditions for crack coalescence, crack shielding, crack interaction, crack initiation, etc. are discussed with respect to crack position parameters. Considering crack tip distance, crack offset distance, crack size and crack inclination with loading axis as input parameter and crack initiation direction as output parameter, an artificial neural network (ANN) model is developed. The model results were then compared with the experimental results. It was observed that the model predicts the crack initiation direction under monotonic loading within a scatter band of ±0.5°.

Design/methodology/approach

The study is based on the experimental observations. Growth studies are made from the growth initiation from two cracks in a rectangular aluminium plate under static loading. The present study is focused on the influence of crack position defined by crack offset distance and crack tip distance on growth direction. In addition to this, ANN has been used to predict crack growth direction in multiple crack geometry under static loading. The predicted results have been compared with the experimental data.

Findings

The influence of the interaction between multiple cracks on crack extension angle greatly depends on the relative position of cracks defined by crack tip distance S, crack offset distance H and crack inclinations with respect to loading direction. The intensity of the crack interaction can be described according to degree of crack extension angle and relative crack position factors. It is also observed that the progress of the outer and inner crack tip direction is different which mainly depends on the relative crack position.

Research limitations/implications

It is limited to static loading only. Under fatigue loading findings may differ.

Practical implications

It is important to investigate the growth behaviour under multiple cracks and also to know the effect of crack statistics on the growth behaviour to estimate the component life. The study also focused on the development of a high quality predictive method.

Originality/value

The results show trends that vary with crack geometry condition and the ANN and empirical solution provides a possible solution to assess crack initiation angle under multiple crack geometry.

Details

International Journal of Structural Integrity, vol. 4 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 September 2005

Olli Nousiaianen, Risto Rautioaho, Kari Kautio, Jussi Jääskeläinen and Seppo Leppävuori

To investigate the effect of the metallization and solder mask materials on the solder joint reliability of low temperature co‐fired ceramic (LTCC) modules.

Abstract

Purpose

To investigate the effect of the metallization and solder mask materials on the solder joint reliability of low temperature co‐fired ceramic (LTCC) modules.

Design/methodology/approach

The fatigue performance of six LTCC/PCB assembly versions was investigated using temperature cycling tests in the −40‐125°C and 20‐80°C temperature ranges. In order to eliminate fatigue cracking in the LTCC module itself, large AgPt‐metallized solder (1 mm) lands with organic or co‐fired glaze solder masks, having 0.86‐0.89 mm openings, were used. The performance of these modules was compared to that of AgPd‐metallized modules with a similar solder land structure. The joint structures were analysed using resistance measurements, scanning acoustic microscopy, SEM/EDS investigation, and FEM simulations.

Findings

The results showed that failure distributions with Weibull shape factor (β) values from 8.4 to 14.2, and characteristic life time (θ) values between 860 and 1,165 cycles were achieved in AgPt assemblies in the −40‐125°C temperature range. The primary failure mechanism was solder joint cracking, whereas the AgPd‐metallized modules suffered from cracking in the ceramic. In the milder test conditions AgPd‐metallized modules showed better fatigue endurance than AgPt‐metallized modules.

Originality/value

This paper proves that the cracking in ceramic in the harsh test condition can be eliminated almost completely by using AgPt metallization instead of AgPd metallization in the present test module structure.

Details

Soldering & Surface Mount Technology, vol. 17 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 July 1995

K.S. Kim

A numerical procedure is described for the elastic—plastic finiteelement analysis of crack propagation with branching. Constraint equationsare used to model crack closing and…

Abstract

A numerical procedure is described for the elastic—plastic finite element analysis of crack propagation with branching. Constraint equations are used to model crack closing and sliding. Constraint conditions are imposed by using a penalty method for the self‐similar crack propagation and an elimination method for the off‐axis propagation. The contact condition is examined during plasticity iterations. The use of multiple constraints at the crack branching point to determine the mode of contact is discussed in detail. The method is then applied to (i) the self‐similar crack growth in a single‐edge notch specimen, (ii) the self‐similar propagation followed by interfacial splitting in a center‐cracked 0° composite plate, and (iii) the bifurcation of a crack in a compact tension specimen.

Details

Engineering Computations, vol. 12 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 June 2024

Chen Yu and Wei Tian

This paper aims to investigate the application of 3D printing technology, particularly using sand-type materials, in the creation of artificial rock models for rock mechanics…

Abstract

Purpose

This paper aims to investigate the application of 3D printing technology, particularly using sand-type materials, in the creation of artificial rock models for rock mechanics experimentation.

Design/methodology/approach

Using a comprehensive analysis, this research explores the utilization of 3D printing technology in rock mechanics. Sand-type materials are specifically investigated for their ability to replicate natural rock characteristics. The methodology involves a review of recent achievements and experimentation in this field.

Findings

The study reveals that sand-type 3D printing materials demonstrate comparable properties to natural rocks, including brittle characteristics, surface roughness, microstructural features and crack propagation patterns.

Research limitations/implications

While the research establishes the viability of sand-type 3D printing materials, it acknowledges limitations such as the need for further exploration and validation. Generalizability may be constrained, warranting additional research to address these limitations.

Originality/value

This research contributes insights into the potential application of sand-type 3D printing materials in indoor rock physics experiments. The findings may guide future endeavors in fabricating rock specimens with consistent structures for practical rock mechanics applications.

Details

Rapid Prototyping Journal, vol. 30 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 August 2022

Shijian Wang, Qiyuan He, Quanwei Liang, Jie Cui, Qing Jiang, Chang Liu, Chao He, Lang Li and Yao Chen

The study aims to examine the effect of inclusions and inherent microstructure on fatigue behavior of 34Cr2Ni2Mo steel.

Abstract

Purpose

The study aims to examine the effect of inclusions and inherent microstructure on fatigue behavior of 34Cr2Ni2Mo steel.

Design/methodology/approach

Fatigue behavior of 34Cr2Ni2Mo steel was investigated for up to 1E10 cycles.

Findings

Results showed that both inclusion and inherent microstructure have an influence on the crack initiation mechanism. Fatigue cracks mostly initiated from inclusions, whereas substrate-induced crack initiations were also observed. Fatigue life of inclusion-induced failures is mostly determined by the location of inclusions rather than the loading stress. The inherent microstructure seems to tolerate inclusions at a lower stress level in very high-cycle regime owing to the absence of internal inclusion-induced failure. For the substrate-induced crack initiations, high-density dislocations are found to be accumulated around the carbide particle-matrix interface, which may be the cause of crack initiation in the inherent structure due to strain localization.

Originality/value

The effect of inclusions and inherent microstructure on fatigue behavior of 34Cr2Ni2Mo steel up to 1E10 cycles.

Highlights

  • Fatigue failure occurs even at a lifetime of 5.76E9 cycles.

  • Surface inclusion induced premature failures.

  • Inherent microstructure tolerates inclusions at lower stress level.

  • Internal carbides promote substrate-induced crack initiations.

Fatigue failure occurs even at a lifetime of 5.76E9 cycles.

Surface inclusion induced premature failures.

Inherent microstructure tolerates inclusions at lower stress level.

Internal carbides promote substrate-induced crack initiations.

Details

International Journal of Structural Integrity, vol. 13 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 12 April 2022

Qing-Yun Deng, Shun-Peng Zhu, Jin-Chao He, Xue-Kang Li and Andrea Carpinteri

Engineering components/structures with geometric discontinuities normally bear complex and variable loads, which lead to a multiaxial and random/variable amplitude stress/strain…

Abstract

Purpose

Engineering components/structures with geometric discontinuities normally bear complex and variable loads, which lead to a multiaxial and random/variable amplitude stress/strain state. Hence, this study aims how to effectively evaluate the multiaxial random/variable amplitude fatigue life.

Design/methodology/approach

Recent studies on critical plane method under multiaxial random/variable amplitude loading are reviewed, and the computational framework is clearly presented in this paper.

Findings

Some basic concepts and latest achievements in multiaxial random/variable amplitude fatigue analysis are introduced. This review summarizes the research status of four main aspects of multiaxial fatigue under random/variable amplitude loadings, namely multiaxial fatigue criterion, method for critical plane determination, cycle counting method and damage accumulation criterion. Particularly, the latest achievements of multiaxial random/variable amplitude fatigue using critical plane methods are classified and highlighted.

Originality/value

This review attempts to provide references for further research on multiaxial random/variable amplitude fatigue and to promote the development of multiaxial fatigue from experimental research to practical engineering application.

Details

International Journal of Structural Integrity, vol. 13 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 April 2005

Jaroslav Mackerle

Ceramic materials and glasses have become important in modern industry as well as in the consumer environment. Heat resistant ceramics are used in the metal forming processes or…

5146

Abstract

Purpose

Ceramic materials and glasses have become important in modern industry as well as in the consumer environment. Heat resistant ceramics are used in the metal forming processes or as welding and brazing fixtures, etc. Ceramic materials are frequently used in industries where a wear and chemical resistance are required criteria (seals, liners, grinding wheels, machining tools, etc.). Electrical, magnetic and optical properties of ceramic materials are important in electrical and electronic industries where these materials are used as sensors and actuators, integrated circuits, piezoelectric transducers, ultrasonic devices, microwave devices, magnetic tapes, and in other applications. A significant amount of literature is available on the finite element modelling (FEM) of ceramics and glass. This paper gives a listing of these published papers and is a continuation of the author's bibliography entitled “Finite element modelling of ceramics and glass” and published in Engineering Computations, Vol. 16, 1999, pp. 510‐71 for the period 1977‐1998.

Design/methodology/approach

The form of the paper is a bibliography. Listed references have been retrieved from the author's database, MAKEBASE. Also Compendex has been checked. The period is 1998‐2004.

Findings

Provides a listing of 1,432 references. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.

Originality/value

This paper makes it easy for professionals working with the numerical methods with applications to ceramics and glasses to be up‐to‐date in an effective way.

Details

Engineering Computations, vol. 22 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 August 2022

Behnam Ameri, Fathollah Taheri-Behrooz, Hamid Reza Majidi and Mohammad Reza Mohammad Aliha

The main aim of this study is to investigate the mixed-mode I/II failure and the cracking manner of three-dimensional (3D)-printed components made by the fused deposition modeling…

Abstract

Purpose

The main aim of this study is to investigate the mixed-mode I/II failure and the cracking manner of three-dimensional (3D)-printed components made by the fused deposition modeling technique in an experimental and theoretical manner.

Design/methodology/approach

Acrylonitrile butadiene styrene (ABS) material and a modified printing method (that increases the adhesion and integrity between the layers and strands) are used for manufacturing the semicircular bending (SCB) test samples. In addition to precracking, the effect of additional stress concentration on the stress field is studied by introducing three small holes to the SCB fracture samples. The critical mixed-mode I/II failure loads obtained from the experiments are predicted using different stress/strain-based fracture theories, including maximum tangential stress (MTS), maximum tangential strain (MTSN), generalized form of MTS and MTSN and combination of them with equivalent material concept (EMC). The effects of plastic deformation, as well as the structural stress concentration, are considered for a more realistic prediction of mixed-mode fracture load.

Findings

The stress-based criteria are more suitable than the strain-based theories. Among the investigated fracture models, the EMC–generalized maximum tangential stress theory provided the best agreement with the experimental results obtained from 3D-printed SCB tests.

Originality/value

The influences of stress risers and applicability of different failure theories in cracked layered 3D-printed parts are studied on the fracture behavior of tested specimens under mixed-mode I/II.

1 – 10 of 293