Search results

1 – 10 of 639
Article
Publication date: 30 January 2024

Burçak Zehir, Mirsadegh Seyedzavvar and Cem Boğa

This study aims to comprehensively investigate the mixed-mode fracture behavior and mechanical properties of selective laser sintering (SLS) polyamide 12 (PA12) components…

Abstract

Purpose

This study aims to comprehensively investigate the mixed-mode fracture behavior and mechanical properties of selective laser sintering (SLS) polyamide 12 (PA12) components, considering different build orientations and layer thicknesses. The primary objectives include the following. Conducting mixed-mode fracture and mechanical analyses on SLS PA12 parts. Investigating the influence of build orientation and layer thickness on the mechanical properties of SLS-printed components. Examining the fracture mechanisms of SLS-produced Arcan fracture and tensile specimens through experimental methods and finite element analyses.

Design/methodology/approach

The research used a combination of experimental techniques and numerical analyses. Tensile and Arcan fracture specimens were fabricated using the SLS process with varying build orientations (X, X–Y, Z) and layer thicknesses (0.1 mm, 0.2 mm). Mechanical properties, including tensile strength, modulus of elasticity and critical stress intensity factor, were quantified through experimental testing. Mixed-mode fracture tests were conducted using a specialized fixture, and finite element analyses using the J-integral method were performed to calculate fracture toughness. Scanning electron microscopy (SEM) was used for detailed morphological analysis of fractured surfaces.

Findings

The investigation revealed that the highest tensile properties were achieved in samples fabricated horizontally in the X orientation with a layer thickness of 0.1 mm. Additionally, parts manufactured with a layer thickness of 0.2 mm exhibited favorable mixed-mode fracture behavior. The results emphasize the significance of build orientation and layer thickness in influencing mechanical properties and fracture behavior. SEM analysis provided valuable insights into the failure mechanisms of SLS-produced PA12 components.

Originality/value

This study contributes to the field of additive manufacturing by providing a comprehensive analysis of the mixed-mode fracture behavior and mechanical properties of SLS-produced PA12 components. The investigation offers novel insights into the influence of build orientation and layer thickness on the performance of such components. The combination of experimental testing, numerical analyses and SEM morphological observations enhances the understanding of fracture behavior in additive manufacturing processes. The findings contribute to optimizing the design and manufacturing of high-quality PA12 components using SLS technology.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 June 2015

Victor Rizov

The purpose of this paper is to study theoretically the ability of the prestressed foam core composite sandwich Split Cantilever Beam (SCB) for generating mixed-mode II/III crack…

Abstract

Purpose

The purpose of this paper is to study theoretically the ability of the prestressed foam core composite sandwich Split Cantilever Beam (SCB) for generating mixed-mode II/III crack loading conditions (the mode II fracture was provided by prestressing the beam using imposed transverse displacements).

Design/methodology/approach

The concepts of linear-elastic fracture mechanics were used. The fracture behavior was studied in terms of the strain energy release rate. For this purpose, a three-dimensional finite element model of the prestressed sandwich SCB was developed. The virtual crack closure technique was applied in order to analyze the strain energy release rate mode components distribution along the crack front.

Findings

It was found that the distribution is non-symmetric. The analysis revealed that a wide mixed-mode II/III ratios range can be generated by varying the magnitude of the imposed transverse displacement. The influence of the sandwich core material on the mixed-mode II/III fracture behavior was investigated. For this purpose, three sandwich beam configurations with different rigid cellular foam core were simulated. It was found that the strain energy release rate decreases when the foam core density increases.

Originality/value

For the first time, a mixed-mode II/III fracture study of foam core composite sandwich beam is performed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 25 June 2021

Cem Boğa

Acrylonitrile butadiene styrene (ABS), as a light and high strength thermoplastic polymer, has found extensive applications in different industries. Fused filament fabrication…

Abstract

Purpose

Acrylonitrile butadiene styrene (ABS), as a light and high strength thermoplastic polymer, has found extensive applications in different industries. Fused filament fabrication, known as three-dimensional (3D) printing technique is considered a rapid prototyping technique that is frequently applied for production of samples of ABS material. Therefore, the purpose of this study is to investigate the mechanical and fracture behavior of such materials and the techniques to improve such properties.

Design/methodology/approach

Experimental and numerical analyses have been conducted to investigate the effects of internal architecture and chopped carbon fiber (CF) fillers on the mechanical properties and mixed mode fracture behavior of the ABS samples made by 3D printing technique. Four different filling types at 70% filling ratios have been used to produce tensile and special fracture test samples with pure and CF filled ABS filaments (CF-ABS) using 3D process. A special fixture has been developed to apply mixed mode loading on fracture samples, and finite element analyses have been conducted to determine the geometric function of such samples at different loading angles.

Findings

It has been determined that the printing pattern has a significant effect on the mechanical properties of the sample. The addition of 15% CF to pure ABS resulted in a significant increase in tensile strength of 46.02% for line filling type and 15.04% for hexagon filling type. It has been determined that as the loading angle increases from 0° to 90°, the KIC value decreases. The addition of 15% CF increased the KIC values for hexagonal and line filling type by 64.14% and 12.5%, respectively.

Originality/value

The damage that will occur in ABS samples produced in 3D printers depends on the type, amount, filling speed, filling type, filling ratio, filling direction and mechanical properties of the additives. All these features are clearly dependent on the production method. Even if the same additive is used, the production method difference shows different microstructural parameters, especially different mechanical properties.

Details

Rapid Prototyping Journal, vol. 27 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 August 2022

Behnam Ameri, Fathollah Taheri-Behrooz, Hamid Reza Majidi and Mohammad Reza Mohammad Aliha

The main aim of this study is to investigate the mixed-mode I/II failure and the cracking manner of three-dimensional (3D)-printed components made by the fused deposition modeling…

Abstract

Purpose

The main aim of this study is to investigate the mixed-mode I/II failure and the cracking manner of three-dimensional (3D)-printed components made by the fused deposition modeling technique in an experimental and theoretical manner.

Design/methodology/approach

Acrylonitrile butadiene styrene (ABS) material and a modified printing method (that increases the adhesion and integrity between the layers and strands) are used for manufacturing the semicircular bending (SCB) test samples. In addition to precracking, the effect of additional stress concentration on the stress field is studied by introducing three small holes to the SCB fracture samples. The critical mixed-mode I/II failure loads obtained from the experiments are predicted using different stress/strain-based fracture theories, including maximum tangential stress (MTS), maximum tangential strain (MTSN), generalized form of MTS and MTSN and combination of them with equivalent material concept (EMC). The effects of plastic deformation, as well as the structural stress concentration, are considered for a more realistic prediction of mixed-mode fracture load.

Findings

The stress-based criteria are more suitable than the strain-based theories. Among the investigated fracture models, the EMC–generalized maximum tangential stress theory provided the best agreement with the experimental results obtained from 3D-printed SCB tests.

Originality/value

The influences of stress risers and applicability of different failure theories in cracked layered 3D-printed parts are studied on the fracture behavior of tested specimens under mixed-mode I/II.

Article
Publication date: 12 August 2014

A. Pirondi, G. Giuliese and F. Moroni

In this work, the cohesive zone model (CZM) developed by some of the authors to simulate the propagation of fatigue defects in two dimensions is extended in order to simulate the…

Abstract

Purpose

In this work, the cohesive zone model (CZM) developed by some of the authors to simulate the propagation of fatigue defects in two dimensions is extended in order to simulate the propagation of defects in 3D. The paper aims to discuss this issue.

Design/methodology/approach

The procedure has been implemented in the finite element (FE) solver (Abaqus) by programming the appropriate software-embedded subroutines. Part of the procedure is devoted to the calculation of the rate of energy release per unit, G, necessary to know the growth of the defect.

Findings

The model was tested on different joint geometries, with different load conditions (pure mode I, mode II pure, mixed mode I/II) and the results of the analysis were compared with analytical solutions or virtual crack closure technique (VCCT).

Originality/value

The possibility to simulate the growth of a crack without any re-meshing requirements and the relatively easy possibility to manipulate the constitutive law of the cohesive elements makes the CZM attractive also for the fatigue crack growth simulation. However, differently from VCCT, three-dimensional fatigue de-bonding/delamination with CZM is not yet state-of-art in FE softwares.

Details

International Journal of Structural Integrity, vol. 5 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 February 2000

J.P.M. Gonçalves, M.F.S.F. de Moura, P.M.S.T. de Castro and A.T. Marques

An interface finite element for three‐dimensional problems based on the penalty method is presented. The proposed element can model joints/interfaces between solid finite elements…

1108

Abstract

An interface finite element for three‐dimensional problems based on the penalty method is presented. The proposed element can model joints/interfaces between solid finite elements and also includes the propagation of damage in pure mode I, pure mode II and mixed mode considering a softening relationship between the stresses and relative displacements. Two different contact conditions are considered: point‐to‐point constraint for closed points (not satisfying the failure criterion) and point‐to‐surface constraint for opened points. The performance of the element is tested under mode I, mode II and mixed mode loading conditions.

Details

Engineering Computations, vol. 17 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 June 2019

Bharath Kenchappa, Lokamanya Chikmath and Bhagavatula Dattaguru

Lug joints with fasteners play a crucial role in connecting many major components of the aircraft. Most of the failures in the past were credited to the damages initiating and…

Abstract

Purpose

Lug joints with fasteners play a crucial role in connecting many major components of the aircraft. Most of the failures in the past were credited to the damages initiating and progressing from these types of joints. Ensuring the structural integrity of these fastener joints is a major issue in many engineering structures, especially in aerospace components, which would otherwise lead to fatal failure. The purpose of this paper is to adopting the prognostic approach for analysing these lug joints with fasteners subjected to off-axis loading by estimating the crack initiation and crack growth life of these joints. This data will be useful to estimate the remaining life of these joints at any given stage of operations, which is mandatory in structural health monitoring (SHM).

Design/methodology/approach

Straight and tapered lug joints are modelled using the finite element method in MSC PATRAN and analysed in MSC NASTRAN. These lug joints are analysed with a push fit fastener. The contact/separation regions at the pin–lug interface are carefully monitored throughout the analysis for various loading conditions. Critical locations in these lug joints are identified through stress analysis. Fatigue crack initiation and fatigue crack growth analysed is carried out at these locations for different load ratios. A computational method is proposed to estimate the cycles to reach crack initiation and cycles at which the crack in the lug joint become critical by integrating several known techniques.

Findings

Analysis carried out in this paper describes the importance of tapered lug joints, particularly when subjected to non-conventional way of loading, i.e. off-axis loading. There is a partial loss of contact between pin and lug upon pin loading, and this does not change further with monotonically increasing pin load. But during load reversals, there is a change in contact/separation regions which is effectively handled by inequality constraints in the boundary conditions. Crack growth in these lug joints pertains to mixed-mode cracking and is computed through the MVCCI technique.

Originality/value

Most of the earlier works were carried out on in-plane pin loading along the axis of symmetry of the lug. The current work considers the off-axis pin loading by loading the lug joints with transverse and oblique pin load. The significance of taper angle under such loading condition is brought in this paper. The results obtained in this paper through prognostic approach are of direct relevance to the SHM and damage tolerance design approach where the safety of the structural components is of foremost priority.

Details

International Journal of Structural Integrity, vol. 10 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 14 March 2019

Pedro G.P. Leite and Gilberto Gomes

The purpose of this paper is to present the application of the boundary element method (BEM) in linear elastic fracture mechanics for analysis of fatigue crack propagation…

Abstract

Purpose

The purpose of this paper is to present the application of the boundary element method (BEM) in linear elastic fracture mechanics for analysis of fatigue crack propagation problems in mixed-mode (I+II) using a robust academic software named BemCracker2D and its graphical interface BemLab2D.

Design/methodology/approach

The methodology consists in calculating elastic stress by conventional BEM and to carry out an incremental analysis of the crack extension employing the dual BEM (DBEM). For each increment of the analysis, the stress intensity factors (SIFs) are computed by the J-Integral technique, the crack growth direction is evaluated by the maximum circumferential stress criterion and the crack growth rate is computed by a modified Paris equation, which takes into account an equivalent SIF to obtain the fracture Modes I and II. The numerical results are compared with the experimental and/or BEM values extracted from the open literature, aiming to demonstrate the accuracy and efficiency of the adopted methodology, as well as to validate the robustness of the programs.

Findings

The paper addresses the numerical simulation of fatigue crack growth. The main contribution of the paper is the introduction of a software for simulating two-dimensional fatigue crack growth problems in mixed-mode (I+II) via the DBEM. The software BemCracker2D coupled to the BemLab2D graphical user interface (GUI), for pre/post-processing, are very complete, efficient and versatile and its does make relevant contributions in the field of fracture mechanics.

Originality/value

The main contribution of the manuscript is the development of a GUI for pre/post-processing of 2D fracture mechanics problems, as well as the object oriented programming implementation. Finally, the main merit is of educational nature.

Details

International Journal of Structural Integrity, vol. 10 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 18 July 2022

Mirsadegh Seyedzavvar and Cem Boğa

The purpose of this study was to investigate the effects of CaCO3 nanoparticles on the mechanical properties, and mixed-mode fracture behavior of acrylonitrile butadiene styrene…

159

Abstract

Purpose

The purpose of this study was to investigate the effects of CaCO3 nanoparticles on the mechanical properties, and mixed-mode fracture behavior of acrylonitrile butadiene styrene 3D printed samples with different internal architectures.

Design/methodology/approach

The nanocomposite filaments have been fabricated by a melt-blending technique. The standard tensile, compact tension and special fracture test samples, named Arcan specimens, have been printed at constant extrusion parameters and at four different internal patterns. A special fixture was used to carry out the mixed-mode fracture tests of Arcan samples. Finite element analyses using the J-integral method were performed to calculate the fracture toughness of such samples. The fractographic observations were used to evaluate the mechanism of fracture at different concentrations of nanoparticles.

Findings

The addition of CaCO3 nanoparticles has resulted in a significant increase in the fracture loading of the samples, although this increase was not consistent for all the filling patterns, being more significant for samples with linear and triangular structures. According to the fractographic observations, the creation of uniformly distributed microvoids due to the blunting effect of nanoparticles and 3D stress state at the crack tip in the samples with linear and triangular structures justify the enhancement in the fracture loading by the addition of CaCO3 nanoparticles in the matrix.

Originality/value

There is a significant gap in the knowledge of the effects of different nanoparticles in the polymer samples produced by the fused filament fabrication process. One of such nanoparticles is an inorganic CaCO3 nanoparticle that has been frequently used as nanofillers to improve the thermomechanical properties of thermoplastic polymers. Here, experimental and numerical studies have been conducted to investigate the effects of such nanoadditives on the mechanical and fracture behavior of 3D printed samples.

Details

Rapid Prototyping Journal, vol. 29 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 June 1999

Mohamed S. Gadala and Andrew D.B. McCullough

This paper presents a numerical study of inverse parameter identification problems in fracture mechanics. Inverse methodology is applied to the detection of subsurface cracks and…

1024

Abstract

This paper presents a numerical study of inverse parameter identification problems in fracture mechanics. Inverse methodology is applied to the detection of subsurface cracks and to the study of propagating cracks. The procedure for detecting subsurface cracks combines the finite element method with a sequential quadratic programming algorithm to solve for the unknown geometric parameters associated with the internal flaw. The procedure utilizes finite element substructuring capabilities in order to minimize the processing and solution time for practical problems. The finite element method and non‐linear optimization are also used in determining the direction a crack will propagate in a heterogeneous planar domain. This procedure involves determining the direction that produces the maximum strain energy release for a given increment of crack growth. The procedure is applied to several numerical examples. The results of these numerical studies coincide with theoretical predictions and experimentally observed crack behavior.

Details

Engineering Computations, vol. 16 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 639