Search results

1 – 10 of 284
Article
Publication date: 20 September 2023

Ke Gao, Xiaoqin Zhou, Rongqi Wang, Mingxu Fan and Haochen Han

Compared with the high stiffness of traditional CNC machine tools, the structural stiffness of industrial robots is usually less than 1 N/µm. Chatter not only affects the quality…

Abstract

Purpose

Compared with the high stiffness of traditional CNC machine tools, the structural stiffness of industrial robots is usually less than 1 N/µm. Chatter not only affects the quality of robotic milling but also reduces the accuracy of the milling process. The purpose of this paper is to reduce chatter in the robotic machining process.

Design/methodology/approach

First, the mode coupling chatter mechanism is analyzed. Then the milling force model and the principal stiffness model are established. Finally, the robot milling stability optimization method is proposed. The method considered functional redundancies, and a new robot milling stability index is proposed to improve the quality of milling operations.

Findings

The experimental results prove a significant reduction in force fluctuations and surface roughness after using the proposed robotic milling stability optimization method.

Originality/value

In this paper, a new robot milling stability index and a new robot milling stability optimization method are proposed. This method can significantly increase the milling stability and improve the milling quality, which can be widely used in the industry.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 15 March 2024

Mohamed Slamani, Hocine Makri, Aissa Boudilmi, Ilian A. Bonev and Jean-Francois Chatelain

This research paper aims to optimize the calibration process for an ABB IRB 120 robot, specifically for robotic orbital milling applications, by introducing and validating the use…

Abstract

Purpose

This research paper aims to optimize the calibration process for an ABB IRB 120 robot, specifically for robotic orbital milling applications, by introducing and validating the use of the observability index and telescopic ballbar for accuracy enhancement.

Design/methodology/approach

The study uses the telescopic ballbar and an observability index for the calibration of an ABB IRB 120 robot, focusing on robotic orbital milling. Comparative simulation analysis selects the O3 index. Experimental tests, both static and dynamic, evaluate the proposed calibration approach within the robot’s workspace.

Findings

The proposed calibration approach significantly reduces circularity errors, particularly in robotic orbital milling, showcasing effectiveness in both static and dynamic modes at various tool center point speeds.

Research limitations/implications

The study focuses on a specific robot model and application (robotic orbital milling), limiting generalizability. Further research could explore diverse robot models and applications.

Practical implications

The findings offer practical benefits by enhancing the accuracy of robotic systems, particularly in precision tasks like orbital milling, providing a valuable calibration method.

Social implications

While primarily technological, improved robotic precision can have social implications, potentially influencing fields where robotic applications are crucial, such as manufacturing and automation.

Originality/value

This study’s distinctiveness lies in advancing the accuracy and precision of industrial robots during circular motions, specifically tailored for orbital milling applications. The innovative approach synergistically uses the observability index and telescopic ballbar to achieve these objectives.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Book part
Publication date: 20 May 2024

Albulena Shala and Vlora Berisha

Introduction: This chapter examines the impact of Financial Technology (Fintech) on Environmental, Social, and Governance (ESG) goals to promote a sustainable financial system…

Abstract

Introduction: This chapter examines the impact of Financial Technology (Fintech) on Environmental, Social, and Governance (ESG) goals to promote a sustainable financial system. Digital payment platforms, blockchain applications, and AI-powered analytics have revolutionised the financial landscape in recent years. These advancements have made integrating ESG principles into investment decisions and business practices easier.

Purpose: The main aim of this chapter is to analyse the connections and possibilities that Fintech offers to achieve ESG goals. Understanding how Fintech can facilitate sustainable finance practices is crucial for promoting investment in Fintech.

Methodology: A series of indexes have been examined, including the Global FinTech Index (GFI) in Global and Regional Rank, the Global Sustainable Competitiveness Index, and performing the Green Growth Index, the Green Economic Opportunity Index, the Global Green Finance Index (GGFI), and the Financial Inclusion Index.

Findings: Through comparative analysis, it can be concluded that the countries with the highest rankings are Sweden, Finland, Denmark, Switzerland, and Germany. Sweden ranks highly in the GFI. These results show that these countries rank highly in achieving ESG objectives. Balkan countries, specifically Albania, Bosnia and Herzegovina, and Montenegro, have the weakest results compared to other countries. Policymakers can benefit from the study’s findings to design better regulations and frameworks that promote responsible fintech practices and foster sustainable finance.

Practical Implications: Regulators and agencies responsible for measuring fintech and ESG should strive to align the indexes associated with these two domains as closely as possible. In addition, businesses can utilise the findings of this study to increase awareness about the diverse solutions that fintech offers to achieve the objectives of ESG.

Details

Sustainable Development Goals: The Impact of Sustainability Measures on Wellbeing
Type: Book
ISBN: 978-1-83797-098-8

Keywords

Abstract

Details

Understanding Intercultural Interaction: An Analysis of Key Concepts, 2nd Edition
Type: Book
ISBN: 978-1-83753-438-8

Article
Publication date: 29 September 2023

Huanan Sun, Chenhao Li, Qian Zhang and Yanling Zhu

Through this study, the aim is to provide reference for the improvement of CEO related theories, the reform of internal governance mechanisms and compensation systems in…

Abstract

Purpose

Through this study, the aim is to provide reference for the improvement of CEO related theories, the reform of internal governance mechanisms and compensation systems in enterprises, and ultimately contribute to economic and social development and the achievement of dual carbon goals.

Design/methodology/approach

In the context of accelerating the implementation of the “dual carbon” goal and promoting sustainable economic and social development, this paper builds a panel data model based on the panel data of 31 provinces in China from 2011 to 2019 to empirically test the impact of CEO stability on green innovation and total factor productivity of enterprises.

Findings

The results show that CEO stability has a positive role in promoting enterprise total factor productivity and green innovation and enterprise green innovation also has a positive role in promoting total factor productivity; Heterogeneity testing found that CEO stability has no significant impact on green innovation in state-owned enterprises. Corporate green innovation has a partial mesomeric effect between CEO stability and total factor productivity; The proportion of independent directors has a negative moderating effect on CEO stability and corporate green innovation, while equity incentive has a positive moderating effect on the relationship between CEO stability, corporate total factor productivity and green innovation.

Originality/value

First, it develops the research on CEO stability and its economic consequences. Second, it expands the impact of CEO stability on heterogeneous enterprises. Third, provides new ideas for the reform of internal governance mechanism and salary system of enterprises.

Details

Kybernetes, vol. 53 no. 2
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 20 April 2023

Fatemeh Saghafi, Mohammad Reza Jalilvand, Esrafil Ahmadiyeh and Leila Nasrolahi Vosta

Industrial tourists can contribute to the local sites income. Apart from large and well-known industrial units, small industrial units can also introduce their products to the…

92

Abstract

Purpose

Industrial tourists can contribute to the local sites income. Apart from large and well-known industrial units, small industrial units can also introduce their products to the market by organizing tourism tours. This study aims to analyze an industrial tourism business network established in Isfahan, a large, industrial and historic city in central of Iran, as a case study.

Design/methodology/approach

Participants were managers and experts of organizations operated in the Industrial Tourism Network in Isfahan city. A sample of 30 participates was selected through purposive and snowball sampling approaches. Data was analyzed by qualitative content analysis and social network analysis using UCINET software.

Findings

Twenty-eight organizations participated in the Industrial Tourism Business Network of Isfahan. Macro indices of the network revealed that: density is relatively low; most of the relationships among network member organizations are reciprocal; transitivity is relatively weak indicating low network stability against environmental player; clustering is low, indicating a relatively low tendency of members to form different clusters. Micro indices indicated that in-degree and out-degree centralizations are low; overall centralization is poor. In addition, six actors were in the center and 22 actors were in the peripheral. Finally, the number of interactions of central organizations was triple than the peripheral organizations.

Research limitations/implications

Limitations of this study include: The data obtained in this study only reflected the relationships among the actors studied during a specific period of time; this paper only focused on actors engaged in an industrial tourism network. Therefore, the sample might involve some bias. The results of the study contribute to our understanding of the role of networking in tourism destinations, particularly industrial sites.

Practical implications

According to the results, the authors may be able to advise firms operating in the tourism industry, particularly actors operate in industrial tourism, regarding how to increase their collaboration with both internal and external environment to achieve better performance.

Originality/value

To the best of the authors’ knowledge, this is the first paper that has addressed an industrial tourism business network.

Details

Journal of Islamic Marketing, vol. 14 no. 12
Type: Research Article
ISSN: 1759-0833

Keywords

Article
Publication date: 29 March 2024

Tugrul Oktay and Yüksel Eraslan

The purpose of this paper is to improve autonomous flight performance of a fixed-wing unmanned aerial vehicle (UAV) via simultaneous morphing wingtip and control system design…

Abstract

Purpose

The purpose of this paper is to improve autonomous flight performance of a fixed-wing unmanned aerial vehicle (UAV) via simultaneous morphing wingtip and control system design conducted with optimization, computational fluid dynamics (CFD) and machine learning approaches.

Design/methodology/approach

The main wing of the UAV is redesigned with morphing wingtips capable of dihedral angle alteration by means of folding. Aircraft dynamic model is derived as equations depending only on wingtip dihedral angle via Nonlinear Least Squares regression machine learning algorithm. Data for the regression analyses are obtained by numerical (i.e. CFD) and analytical approaches. Simultaneous perturbation stochastic approximation (SPSA) is incorporated into the design process to determine the optimal wingtip dihedral angle and proportional-integral-derivative (PID) coefficients of the control system that maximizes autonomous flight performance. The performance is defined in terms of trajectory tracking quality parameters of rise time, settling time and overshoot. Obtained optimal design parameters are applied in flight simulations to test both longitudinal and lateral reference trajectory tracking.

Findings

Longitudinal and lateral autonomous flight performances of the UAV are improved by redesigning the main wing with morphing wingtips and simultaneous estimation of PID coefficients and wingtip dihedral angle with SPSA optimization.

Originality/value

This paper originally discusses the simultaneous design of innovative morphing wingtip and UAV flight control system for autonomous flight performance improvement. The proposed simultaneous design idea is conducted with the SPSA optimization and a machine learning algorithm as a novel approach.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 28 July 2022

Ashis Mitra

Cotton fibre lots are graded and selected for yarn spinning based on their quality value which is a function of certain fibre properties. Cotton grading and selection has created…

Abstract

Purpose

Cotton fibre lots are graded and selected for yarn spinning based on their quality value which is a function of certain fibre properties. Cotton grading and selection has created a domain of emerging interest among the researchers. Several researchers have addressed the said issue using a few exponents of multi-criteria decision-making (MCDM) technique. The purpose of this study is to demonstrate a cotton selection problem using a recently developed measurement of alternatives and ranking according to compromise solution (MARCOS) method which can handle almost any decision problem involving a finite number of alternatives and multiple conflicting decision criteria.

Design/methodology/approach

The MARCOS method of the MCDM technique was deployed in this study to rank 17 cotton fibre lots based on their quality values. Six apposite fibre properties, namely, fibre bundle strength, elongation, fineness, upper half mean length, uniformity index and short fibre content are considered as the six decision criteria assigning weights previously determined by an earlier researcher using analytic hierarchy process.

Findings

Among the 17 alternatives, C9 secured rank 1 (the best lot) with the highest utility function (0.704) and C7 occupied rank 17 (the worst lot) with the lowest utility function (0.596). Ranking given by MARCOS method showed high degree of congruence with the earlier approaches, as evidenced by high rank correlation coefficients (Rs > 0.814). During sensitivity analyses, no occurrence of rank reversal is observed. The correlations between the quality value-based ranking and the yarn tenacity-based rankings are better than many of the traditional methods. The results can be improved further by adopting other efficient method of weighting the criteria.

Practical implications

The properties of raw cotton have significant impact on the quality of final yarn. Compared to the traditional methods, MCDM is reported as the most viable solution in which fibre parameters are given their due importance while formulating a single index known as quality value. The present study demonstrates the application of a recently developed exponent of MCDM in the name of MARCOS for the first time to address a cotton fibre selection problem for textile spinning mills. The same approach can also be extended to solve other decision problems of the textile industry, in general.

Originality/value

Novelty of the present study lies in the fact that the MARCOS is a very recently developed MCDM method, and this is a maiden application of the MARCOS method in the domain of textile, in general, and cotton industry, in particular. The approach is very simple, highly effective and quite flexible in terms of number of alternatives and decision criteria, although highly robust and stable.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 31 July 2023

Dinesh Kumar Kushwaha, Dilbagh Panchal and Anish Sachdeva

To meet energy demand and tackle the challenges posed by global warming, Bagasse-based Cogeneration Power Generation (BCPG) plant in sugar mills have tremendous potential due to…

Abstract

Purpose

To meet energy demand and tackle the challenges posed by global warming, Bagasse-based Cogeneration Power Generation (BCPG) plant in sugar mills have tremendous potential due to large-scale supply of renewable fuel called bagasse. To meet this goal, an integrated framework has been proposed for analyzing performance issues of BCPG.

Design/methodology/approach

Intuitionistic Fuzzy Lambda-Tau (IFLT) approach was implemented to compute various reliability parameters. Intuitionistic Fuzzy Failure Mode and Effect Analysis (IF-FMEA) approach has been implemented for studying risk issues results in decrease in plant's availability. Moreover, IF- Technique for Order Performance by Similarity to Ideal Solution (IF-TOPSIS) is implemented to verify accuracy of IF-FMEA approach.

Findings

For membership and non-membership functions, availability decreases to 0.0006% and 0.0020% respectively for spread ±15% to ±30%, and further decreases to 0.0127% and 0.0221% for spread ±30% to ±45%. Under risk assessment failure causes namely Storage tank (ST3), Valve (VL6), Transfer pump (TF8), Deaerator tank (DT11), High pressure heater and economiser (HP15), Boiler drum and super heater (BS22), Forced draft and Secondary air fan (FS25), Air preheater (AH29) and Furnace (FR31) with Intuitionistic Fuzzy Hybrid Weighted Euclidean Distance (IFHWED) based output scores – 0.8988, 0.9752, 0.9400, 0.8988, 0.9267, 1.1131, 1.0039, 0.8185, 1.0604 were identified as the most critical failure causes.

Research limitations/implications

Reliability and risk analysis results derived from IFLT and IF-FMEA approaches respectively, to address the performance issues of BCPG is based on the quantitative and qualitative data collected from the industrial experts and maintenance log book. Moreover, to take care of hesitation in expert's knowledge, IF theory-based concept is incorporated so as to achieve more accuracy in analysis results. Reliability and risk analysis results together will be helpful in analyzing the performance characteristics and diagnosis of critical failure causes, which will minimize frequent failure in BCPG.

Practical implications

The framework will help plant managers to frame optimal maintenance policy in order to enhance the operational aspects of the considered unit. Moreover, the accurate and early detection of failure causes will also help managers to take prudent decision for smooth operation of plant.

Social implications

The results obtained ensure continuous operation of plant by utilizing the bagasse as fuel in boiler and also mitigate the wastages of fuel. If this bagasse (green fuel) is not properly utilized, there remains a dependency on coal-based power plants to meet the power demand. The results obtained are useful for decreasing dependency on coal, and promoting bagasse as the green, and alternative fuel, the emission by burning of these fuels are not harmful for environment and thereby contribute in preventing the environment from harmful effect of GHGs gases.

Originality/value

IFLT approach has been implemented to develop reliability modeling equations of the BCPG unit, and furthermore to compute various reliability parameters for both membership and non-membership function. The ranking results of IF-FMEA are compared to IF-TOPSIS approach. Sensitivity analysis is done to check stability of proposed framework.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 9 June 2023

Shucai Yang, Shiwen Xing, Yang Yu, Pei Han, Chaoyang Guo and Lukai Liu

It was verified that the micro-texture in the front and back of the tool at the same time had a positive effect on improving the milling behavior and surface quality of the tool…

Abstract

Purpose

It was verified that the micro-texture in the front and back of the tool at the same time had a positive effect on improving the milling behavior and surface quality of the tool. The purpose of this study is to explore the rationality of simultaneous placement of micro-textures on the front and rear surfaces of ball-end milling cutters, analyze the influence of micro-texture parameters on tool milling behavior and workpiece surface quality, reveal its internal mechanism, and obtain the best micro-texture parameters by optimization.

Design/methodology/approach

First, the mechanism of micro-texture is studied based on the energy loss model. Second, the orthogonal experiment is designed to analyze the influence of micro-texture parameters on tool milling behavior and reveal its mechanism by combining simulation technology and cutting experiment. Finally, the parameters are optimized based on the artificial bee colony algorithm.

Findings

The results show that the simultaneous placement of micro-texture on the rake face and flank face of the tool has a positive effect on improving the milling behavior and surface quality of the tool. Taking milling force, tool wear and surface roughness as the evaluation criteria, the optimal parameter combination is obtained: the rake face micro-texture diameter is 50 µm, the distance from the micro-texture is 200 µm and the distance from the cutting edge is 110 µm; the diameter of the micro-textured flank is 40 µm, the distance from the micro-texture is 170 µm and the distance from the cutting edge is 130 µm.

Originality/value

Taking milling force, tool wear and surface roughness as the evaluation criteria, the optimal parameter combination is obtained: the rake face micro-texture diameter is 50 µm, the distance from the micro-texture is 200 µm and the distance from the cutting edge is 110 µm; the diameter of the micro-textured flank is 40 µm, the distance from the micro-texture is 170 µm and the distance from the cutting edge is 130 µm, which provides theoretical support for the further study of the micro-textured tool.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2023-0022/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 284