Search results

1 – 10 of 14
Article
Publication date: 13 June 2023

Atul Varshney, Vipul Sharma, T. Mary Neebha and N. Prasanthi Kumari

This paper aims to present a low-cost, edge-fed, windmill-shaped, notch-band eliminator, circular monopole antenna which is practically loaded with a complementary split ring…

Abstract

Purpose

This paper aims to present a low-cost, edge-fed, windmill-shaped, notch-band eliminator, circular monopole antenna which is practically loaded with a complementary split ring resonator (CSRR) in the middle of the radiating conductor and also uses a partial ground to obtain wide-band performance.

Design/methodology/approach

To compensate for the reduced value of gain and reflection coefficient because of the full (complete) ground plane at the bottom of the substrate, the antenna is further loaded with a partial ground and a CSRR. The reduction in the length of ground near the feed line improves the impedance bandwidth, and introduced CSRR results in improved gain with an additional resonance spike. This results in a peak gain 3.895dBi at the designed frequency 2.45 GHz. The extending of three arms in the circular patch not only led to an increase of peak gain by 4.044dBi but also eliminated the notch band and improved the fractional bandwidth 1.65–2.92 GHz.

Findings

The work reports a –10dB bandwidth from 1.63 GHz to 2.91 GHz, which covers traditional coverage applications and new specific uses applications such as narrow LTE bands for future internet of things (NB-IoT) machine-to-machine communications 1.8/1.9/2.1/2.3/2.5/2.6 GHz, industry, automation and business-critical cases (2.1/2.3/2.6 GHz), industrial, society and medical applications such as Wi-MAX (3.5 GHz), Wi-Fi3 (2.45 GHz), GSM (1.9 GHz), public safety band, Bluetooth (2.40–2.485 GHz), Zigbee (2.40–2.48Ghz), industrial scientific medical (ISM) band (2.4–2.5 GHz), WCDMA (1.9, 2.1 GHz), 3 G (2.1 GHz), 4 G LTE (2.1–2.5 GHz) and other personal communication services applications. The estimated RLC electrical equivalent circuit is also presented at the end.

Practical implications

Because of full coverage of Bluetooth, Zigbee, WiFi3 and ISM band, the proposed fabricated antenna is suitable for low power, low data rate and wireless/wired short-range IoT-enabled medical applications.

Originality/value

The antenna is fabricated on a piece (66.4 mm × 66.4 mm × 1.6 mm) of low-cost low profile FR-4 epoxy substrate (0.54 λg × 0.54 λg) with a dielectric constant of 4.4, a loss tangent of 0.02 and a thickness of 1.6 mm. The antenna reflection coefficient, impedance and VSWR are tested on the Keysight technology (N9917A) vector network analyzer, and the radiation pattern is measured in an anechoic chamber.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 July 2023

Upendra S. Gupta, Sudhir Tiwari and Uttam Sharma

The incompatibility of natural fibers with polymer matrices is one of the key obstacles restricting their use in polymer composites. The interfacial connection between the fibers…

Abstract

Purpose

The incompatibility of natural fibers with polymer matrices is one of the key obstacles restricting their use in polymer composites. The interfacial connection between the fibers and the matrix was weak resulting in a lack of mechanical properties in the composites. Chemical treatments are often used to change the surface features of plant fibers, yet these treatments have significant drawbacks such as using substantial amounts of liquid and chemicals. Plasma modification has recently become very popular as a viable option as it is easy, dry, ecologically friendly, time-saving and reduces energy consumption. This paper aims to explore plasma treatment for improving the surface adhesion characteristics of sisal fibers (SFs) without compromising the mechanical attributes of the fiber.

Design/methodology/approach

A cold glow discharge plasma (CGDP) modification using N2 gas at varied power densities of 80 W and 120 W for 0.5 h was conducted to improve the surface morphology and interfacial compatibility of SF. The mechanical characteristics of unmodified and CGDP-modified SF-reinforced epoxy composite (SFREC) were examined as per the American Society for Testing and Materials standards.

Findings

The cold glow discharge nitrogen plasma treatment of SF at 120 W (30 min) enhanced the SFREC by nearly 122.75% superior interlaminar shear strength, 71.09% greater flexural strength, 84.22% higher tensile strength and 109.74% higher elongation. The combination of improved surface roughness and more effective lignocellulosic exposure has been responsible for the increase in the mechanical characteristics of treated composites. The development of hydrophobicity in the SF had been induced by CGDP N2 modification and enhanced the size of crystals and crystalline structure by removing some unwanted constituents of the SF and etching the smooth lignin-rich surface layer of the SF particularly revealed via FTIR and XRD.

Research limitations/implications

Chemical and physical treatments have been identified as the most efficient ways of treating the fiber surface. However, the huge amounts of liquids and chemicals needed in chemical methods and their exorbitant performance in terms of energy expenditure have limited their applicability in the past decades. The use of appropriate cohesion in addition to stimulating the biopolymer texture without changing its bulk polymer properties leads to the formation and establishment of plasma surface treatments that offer a unified, repeatable, cost-effective and environmentally benign replacement.

Originality/value

The authors are sure that this technology will be adopted by the polymer industry, aerospace, automotive and related sectors in the future.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 April 2024

Goksel Saracoglu, Serap Kiriş, Sezer Çoban, Muharrem Karaaslan, Tolga Depci and Emin Bayraktar

The aim of this study is to determine the fracture behavior of wool felt and fabric based epoxy composites and their responses to electromagnetic waves.

28

Abstract

Purpose

The aim of this study is to determine the fracture behavior of wool felt and fabric based epoxy composites and their responses to electromagnetic waves.

Design/methodology/approach

Notched and unnotched tensile tests of composites made of wool only and hybridized with a glass fiber layer were carried out, and fracture behavior and toughness at macro scale were determined. They were exposed to electromagnetic waves between 8 and 18 GHz frequencies using two horn antennas.

Findings

The keratin and lignin layer on the surface of the wool felt caused lower values to be obtained compared to the mechanical values given by pure epoxy. However, the use of wool felt in the symmetry layer of the laminated composite material provided higher mechanical values than the composite with glass fiber in the symmetry layer due to the mechanical interlocking it created. The use of wool in fabric form resulted in an increase in the modulus of elasticity, but no change in fracture toughness was observed. As a result of the electromagnetic analysis, it was also seen in the electromagnetic analysis that the transmittance of the materials was high, and the reflectance was low throughout the applied frequency range. Hence, it was concluded that all of the manufactured materials could be used as radome material over a wide band.

Practical implications

Sheep wool is an easy-to-supply and low-cost material. In this paper, it is presented that sheep wool can be evaluated as a biocomposite material and used for radome applications.

Originality/value

The combined evaluation of felt and fabric forms of a natural and inexpensive reinforcing element such as sheep wool and the combined evaluation of fracture mechanics and electromagnetic absorption properties will contribute to the evaluation of biocomposites in aviation.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 29 September 2023

Lutamyo Nambela

The purpose of this study was to review the information on the scientific efforts and achievements in sustainable industrial textile applications of natural colourants. Then the…

Abstract

Purpose

The purpose of this study was to review the information on the scientific efforts and achievements in sustainable industrial textile applications of natural colourants. Then the paper suggests the ways of improving the industrial textile applications of plant-based colourants.

Design/methodology/approach

The literature on the chemistry, sources and extraction of plant-based natural colourants was reviewed. The reviewed information was analysed and synthesised to provide techniques for selecting sustainable extraction methods, possible sustainable textile applications of natural colourants and the challenges which hinder industrial textile applications of plant-based natural colourants. The ways of overcoming the challenges of the industrial textile applications of plant natural colourants were suggested. Lastly, the current situation of industrial application of natural dyes in textiles is presented.

Findings

Despite the scientific achievement to overcome the challenges of natural colourants for textiles, the global industrial application of natural colourants is still low. Inadequate knowledge of the dyers results into poor performance of the natural dyed textile. The natural dyed textiles are expensive due to the scarcity of raw materials for manufacturing of natural colourants. The selection of suitable extraction, application methods and type of substrate should consider the chemistry of the particular colourant. The society should be educated about the benefits of natural dyed textiles. Cultivation of colourant-bearing plants should be promoted to meet the industrial material demand.

Originality/value

The paper provides a synthesized collection of information about the source, chemistry, extraction, textile application and challenges of plant-based natural colourants. The reviewed information was analysed and synthesised to provide techniques for selecting sustainable extraction methods, possible sustainable textile applications of natural colourants and the challenges which hinder industrial textile applications of plant-based natural colourants. The ways of overcoming the challenges of the industrial textile applications of plant natural colourants were suggested.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 7 February 2024

Borja López-Alonso, Pablo Briz, Hector Sarnago, José M. Burdio and Oscar Lucia

This paper aims to study the feasibility of proposed method to focus the electroporation ablation by mean of multi-output multi-electrode system.

28

Abstract

Purpose

This paper aims to study the feasibility of proposed method to focus the electroporation ablation by mean of multi-output multi-electrode system.

Design/methodology/approach

The proposed method has been developed based on a previously designed electroporation system, which has the capabilities to modify the electric field distribution in real time, and to estimate the impedance distribution. Taking into consideration the features of the system and biological tissues, the problem has been addressed in three phases: modeling, control system design and simulation testing. In the first phase, a finite element analysis model has been proposed to reproduce the electric field distribution within the hepatic tissue, based on the characteristics of the electroporation system. Then, a control strategy has been proposed with the goal of ensuring complete ablation while minimizing the affected volume of healthy tissue. Finally, to check the feasibility of the proposal, several representative cases have been simulated, and the results have been compared with those obtained by a traditional system.

Findings

The proposed method achieves the proposed goal, as part of a complex electroporation system designed to improve the targeting, effectiveness and control of electroporation treatments and serve to demonstrate the feasibility of developing new electroporation systems capable of adapting to changes in the preplanning of the treatment in real-time.

Originality/value

The work presents a thorough study of control method to multi-output multi-electrode electroporation system by mean of a rigorous numerical simulation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 April 2024

P. Gunasekar, Anderson A. and Praveenkumar T.R.

Composite materials have revolutionized the aerospace industry by offering superior structural qualities over traditional elements. This study aims to focus on the development and…

Abstract

Purpose

Composite materials have revolutionized the aerospace industry by offering superior structural qualities over traditional elements. This study aims to focus on the development and testing of bamboo natural fiber-based composites enhanced with SiO2 nanoparticles.

Design/methodology/approach

The investigation involved fabricating specimens with varying nanoparticle compositions (0, 10 and 20%) and conducting tensile, flexural, impact and fracture toughness tests. Results indicated significant improvements in mechanical properties with the addition of nanoparticles, particularly at a 10% composition level.

Findings

This study underscores the potential of natural fiber composites, highlighting their environmental friendliness, cost-effectiveness and improved structural properties when reinforced with nanoparticles. The findings suggest an optimal ratio for nanoparticle integration, emphasizing the critical role of precise mixing proportions in achieving superior composite performance.

Originality/value

The tensile strength, flexural strength, impact resistance and fracture toughness exhibited notable enhancements compared with the 0 and 20% nanoparticle compositions. The 10% composition showed the most promising outcomes, showcasing increased strength across all parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 February 2022

Mona Saied, Abeer Reffaee, Shimaa Hamieda, Salwa L. Abd- El- Messieh and Emad S. Shafik

This study aims to get rid of non-degradable polyvinyl chloride (PVC) waste as well as sunflower seed cake (SSC) waste by preparing eco-friendly composites from both in different…

Abstract

Purpose

This study aims to get rid of non-degradable polyvinyl chloride (PVC) waste as well as sunflower seed cake (SSC) waste by preparing eco-friendly composites from both in different proportions to reach good mechanical and insulating properties for antimicrobial and antistatic applications.

Design/methodology/approach

Eco-friendly composite films based on waste polyvinylchloride (WPVC) and SSC of concentrations (0, 10, 20, 30 and 40 Wt.%) were prepared using solution casting method. Further, the effect of sunflower seed oil (SSO) on the biophysical properties of the prepared composites is also investigated. Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscope, mechanical, thermal, dielectric properties were assessed. Besides, the antimicrobial and biodegradation tests were also studied.

Findings

The crystallinity increases by rising SSC concentration as revealed by XRD results. Additionally, the permittivity (ε′) increases by increasing SSC filler and SSO as well. A remarkable increase in dc conductivity was attained after the addition of SSO. While raw WPVC has very low bacterial activity. The composite films are found to be very effective against staphylococcus epidermidis, staphylococcus aureus bacteria and against candida albicans as well. On the other hand, the weight loss of WPVC increases by adding of SSC and SSO, as disclosed by biodegradation studies.

Originality/value

The study aims to reach the optimum method for safe and beneficial disposal of PVC waste as well as SSC for antistatic and antimicrobial application.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 17 April 2023

Kawaljit Singh Randhawa

The purpose of this study is to prepare a state-of-the-art review on advanced ceramic materials including their fabrication techniques, characteristics, applications and…

Abstract

Purpose

The purpose of this study is to prepare a state-of-the-art review on advanced ceramic materials including their fabrication techniques, characteristics, applications and wettability.

Design/methodology/approach

This review paper presents the various types of advanced ceramic materials according to their compounding elements, fabrication techniques of advanced ceramic powders as well as their consolidation, their characteristics, applications and wetting properties. Hydrophobic/hydrophilic properties of advanced ceramic materials are described in the paper with their state-of-the-art application areas. Optical properties of fine ceramics with their intrinsic characteristics are also presented within. Special focus is given to the brief description of application-based manipulation of wetting properties of advanced ceramics in the paper.

Findings

The study of wetting/hydrophobicity/hydrophilicity of ceramic materials is important by which it can be further modified to achieve the required applications. It also makes some sense that the material should be tested for its wetting properties when it is going to be used in some important applications like biomedical and dental. Also, these advanced ceramics are now often used in the fabrication of filters and membranes to purify liquid/water so the study of wetting characteristics of these materials becomes essential. The optical properties of advanced ceramics are equally making them suitable for many state-of-the-art applications. Dental, medical, imaging and electronics are the few sectors that use advanced ceramics for their optical properties.

Originality/value

This review paper includes various advanced ceramic materials according to their compounding elements, different fabrication techniques of powders and their consolidation, their characteristics, various application area and hydrophobic/hydrophilic properties.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 July 2023

Nagla Elshemy, Hamada Mashaly and Shimaa Elhadad

This study aims to observe the coloring efficacy of graphite (G) and nano bentonite clay (BCNPs) on the adsorption of Basic Blue 5 dye from residual dye bath solution.

Abstract

Purpose

This study aims to observe the coloring efficacy of graphite (G) and nano bentonite clay (BCNPs) on the adsorption of Basic Blue 5 dye from residual dye bath solution.

Design/methodology/approach

Some factors that affected the adsorption processes were examined and found to have significant impacts on the adsorption capacity such as the initial concentration of G and/or BCNPs (Co: 40–2,320 mg/L), adsorbent bath pH (4–9), shaking time (30–150 min.) and initial dye concentration (40–200 mg/L). The adsorption mechanism of dye by using G and/or BCNPs was studied using two different models (first-pseudo order and second-pseudo order diffusion models). The equilibrium adsorption data for the dye understudy was analyzed by using four different models (Langmuir, Freundlich, Temkin modle and Dubinin–Radushkevich) models.

Findings

It has been found that the adsorption kinetics follow rather a pseudo-first-order kinetic model with a determination coefficient (R2) of 0.99117 for G and 0.98665 for BCNPs. The results indicate that the Freundlich model provides the best correlation for G with capacities q_max = 2.33116535 mg/g and R2 = 0.99588, while the Langmuir model provides the best correlation for BCNPs with R2 = 0.99074. The adsorbent elaborated from BCNPs was found to be efficient and suitable for removing basic dyes rather than G from aqueous solutions due to its availability, good adsorption capability, as well as low-cost preparation.

Research limitations/implications

There is no research limitation for this work. Basic Blue 5 dye graphite (G) and nano bentonite clay (BCNPs) were used.

Practical implications

This work has practical applications for the textile industry. It is concluded that using graphite and nano bentonite clay can be a possible alternative to adsorb residual dye from dye bath solution and can make the process greener.

Social implications

Socially, it has a good impact on the ecosystem and global community because the residual dye does not contain any carcinogenic materials.

Originality/value

The work is original and contains value-added products for the textile industry and other confederate fields.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 9 November 2022

Ali A. Ali, Malek Alshukur, Ashraf M. Ashmawy, Ammar M. Mahmoud, Ahmed Saleh, Hesham S. Nassar and Bo Yao

This study aims to show the dyeing behaviour of polyester fabrics using four novel heterocyclic disperse dyes.

Abstract

Purpose

This study aims to show the dyeing behaviour of polyester fabrics using four novel heterocyclic disperse dyes.

Design/methodology/approach

The four dyes were synthesized based on 5, 5'-(1, 4-phenylene) bis (1, 3, 4-thiadiazol-2-amine) as a diazonium compound. The UV/Vis absorption spectroscopic data of these disperse dyes while dyeing polyester fabrics were investigated. Following this, the dyeing properties of these dyes on polyester fabrics were investigated under acid condition.

Findings

The results showed that increasing the dyeing temperature from 80°C to 100°C led to an increase in dye uptake for all dyes, but further increases of the temperature to 130°C led to higher dye uptake for dye 3 as the dye exhaustion increased by about 50% from 55.9% to 91.4%.

Originality/value

This study is important as it introduces new dyes for the dyeing of polyethylene terephthalate (PET) fibres with colours that range from yellowish orange to bluish yellow and scarlet red and all with excellent brightness, levelness and depth of shade.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of 14