Search results

1 – 10 of 77
Article
Publication date: 17 April 2024

Bingyi Li, Songtao Qu and Gong Zhang

This study aims to focus on the surface mount technology (SMT) mass production process of Sn-9Zn-2.5Bi-1.5In solder. It explores it with some components that will provide…

38

Abstract

Purpose

This study aims to focus on the surface mount technology (SMT) mass production process of Sn-9Zn-2.5Bi-1.5In solder. It explores it with some components that will provide theoretical support for the industrial SMT application of Sn-Zn solder.

Design/methodology/approach

This study evaluates the properties of solder pastes and selects a more appropriate reflow parameter by comparing the microstructure of solder joints with different reflow soldering profile parameters. The aim is to provide an economical and reliable process for SMT production in the industry.

Findings

Solder paste wettability and solder ball testing in a nitrogen environment with an oxygen content of 3,000 ppm meet the requirements of industrial production. The printing performance of the solder paste is good and can achieve a printing rate of 100–160 mm/s. When soldering with a traditional stepped reflow soldering profile, air bubbles are generated on the surface of the solder joint, and there are many voids and defects in the solder joint. A linear reflow soldering profile reduces the residence time below the melting point of the solder paste (approximately 110 s). This reduces the time the zinc is oxidized, reducing solder joint defects. The joint strength of tin-zinc joints soldered with the optimized reflow parameters is close to that of Sn-58Bi and SAC305, with high joint strength.

Originality/value

This study attempts to industrialize the application of Sn-Zn solder and solves the problem that Sn-Zn solder paste is prone to be oxidized in the application and obtains the SMT process parameters suitable for Sn-9Zn-2.5Bi-1.5In solder.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 5 July 2023

Yanmei Xu, Yanan Zhang, Ziqiang Wang, Xia Song, Zhenli Bai and Xiang Li

Unlike traditional industries, the e-cigarette is an epoch-making innovative product originating in China and occupying an absolute competitive advantage in the international…

Abstract

Purpose

Unlike traditional industries, the e-cigarette is an epoch-making innovative product originating in China and occupying an absolute competitive advantage in the international market. The traditional A-U model describes the laws and characteristics of technological innovation in developed countries. In contrast, the inverse A-U model depicts the process of “secondary innovation” in late-developing countries through digestion and absorption. This paper aims to find out that if the e-cigarette, as a “first innovation” industry in a late-developing country, conform to the A-U model or conform to the “inverse A-U model”.

Design/methodology/approach

This paper takes the patent data of e-cigarettes from 2004 to 2021 as the research object, and uses Python’s Jieba segment words to divide product innovation and process innovation, and then uses statistical analysis methods to conduct empirical analyses on these data.

Findings

Thus, an improved A-U model suitable for the e-cigarette industry is proposed. In this model, product innovation in the e-cigarette industry appeared earlier than process innovation, but the synchronous development of product and process innovation is not lagging. The improved A-U model in the e-cigarette industry is not only different from the traditional A-U model but also does not conform to the inverse A-U model.

Research limitations/implications

It is conducive to expanding and clarifying the theoretical contribution and applicable boundaries of the A-U model and has sparked thinking and exploration of the A-U model in e-cigarettes and emerging industries.

Practical implications

On this basis, suggestions on the development path and countermeasures of the e-cigarette industry are put forward.

Originality/value

Based on the e-cigarette industry, this paper takes patents as the research object and provides the method of dividing product innovation and process innovation, and proposes an A-U model suitable for the e-cigarette industry on this basis. By comparing the traditional A-U model with the inverse A-U model in latecomer countries, the background and causes of e-cigarette A-U model heterogeneity are analyzed from different stages and overall morphology. Based on this, the heterogeneity characteristics of e-cigarette innovation are summarized and sorted out.

Details

Nankai Business Review International, vol. 15 no. 2
Type: Research Article
ISSN: 2040-8749

Keywords

Abstract

Details

Exploring Hope: Case Studies of Innovation, Change and Development in the Global South
Type: Book
ISBN: 978-1-83549-736-4

Article
Publication date: 9 February 2024

Rizk Mostafa Shalaby and Mohamed Saad

The purpose of the present work is to study the impacts of rapid cooling and Tb rare-earth additions on the structural, thermal and mechanical behavior of Bi–0.5Ag lead-free…

Abstract

Purpose

The purpose of the present work is to study the impacts of rapid cooling and Tb rare-earth additions on the structural, thermal and mechanical behavior of Bi–0.5Ag lead-free solder for high-temperature applications.

Design/methodology/approach

Effect of rapid solidification processing on structural, thermal and mechanical properties of Bi-Ag lead-free solder reinforced Tb rare-earth element.

Findings

The obtained results indicated that the microstructure consists of rhombohedral Bi-rich phase and Ag99.5Bi0.5 intermetallic compound (IMC). The addition of Tb could effectively reduce the onset and melting point. The elastic modulus of Tb-containing solders was enhanced to about 90% at 0.5 Tb. The higher elastic modulus may be attributed to solid solution strengthening effect, solubility extension, microstructure refinement and precipitation hardening of uniform distribution Ag99.5Bi0.5 IMC particles which can reasonably modify the microstructure, as well as inhibit the segregation and hinder the motion of dislocations.

Originality/value

It is recommended that the lead-free Bi-0.5Ag-0.5Tb solder be a candidate instead of common solder alloy (Sn-37Pb) for high temperature and high performance applications.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 2 February 2023

Shanmugan Subramani and Mutharasu Devarajan

Polymer-based thermal interface materials (TIMs) are having pump out problem and could be resolved for reliable application. Solid-based interface materials have been suggested…

Abstract

Purpose

Polymer-based thermal interface materials (TIMs) are having pump out problem and could be resolved for reliable application. Solid-based interface materials have been suggested and reported. The purpose of this paper is suggesting thin film-based TIM to sustain the light-emiting diode (LED) performance and electronic device miniaturization.

Design/methodology/approach

Consequently, ZnO thin film at various thicknesses was prepared by chemical vapour deposition (CVD) method and tested their thermal behaviour using thermal transient analysis as solid TIM for high-power LED.

Findings

Low value in total thermal resistance (Rth-tot) was observed for ZnO thin film boundary condition than bare Al boundary condition. The measured interface (ZnO thin film) resistance {(Rth-bhs) thermal resistance of the interface layer (thin film) placed between metal core printed circuit board (MCPCB) board and Al substrates} was nearly equal to Ag paste boundary condition and showed low values for ZnO film prepared at 30 min process time measured at 700 mA. The TJ value of LED mounted on ZnO thin film (prepared at 30 min.) coated Al substrates was measured to be 74.8°C. High value in junction temperature difference (ΔTJ) of about 4.7°C was noticed with 30 min processed ZnO thin film when compared with Al boundary condition. Low correlated colour temperature and high luminous flux values of tested LED were also observed with ZnO thin film boundary condition (processed at 30 min) compared with both Al substrate and Ag paste boundary condition.

Originality/value

Overall, 30 min CVD processed ZnO thin film would be an alternative for commercial TIM to achieve efficient thermal management. This will increase the life span of the LED as the proposed material decreases the TJ values.

Details

Microelectronics International, vol. 41 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 15 April 2024

Amer Mecellem, Soufyane Belhenini, Douaa Khelladi and Caroline Richard

The purpose of this study is to propose a simplifying approach for modelling a reliability test. Modelling the reliability tests of printed circuit board (PCB)/microelectronic…

Abstract

Purpose

The purpose of this study is to propose a simplifying approach for modelling a reliability test. Modelling the reliability tests of printed circuit board (PCB)/microelectronic component assemblies requires the adoption of several simplifying assumptions. This study introduces and validates simplified assumptions for modeling a four-point bend test on a PCB/wafer-level chip scale packaging assembly.

Design/methodology/approach

In this study, simplifying assumptions were used. These involved substituting dynamic imposed displacement loading with an equivalent static loading, replacing the spherical shape of the interconnections with simplified shapes (cylindrical and cubic) and transitioning from a three-dimensional modelling approach to an equivalent two-dimensional model. The validity of these simplifications was confirmed through both quantitative and qualitative comparisons of the numerical results obtained. The maximum principal plastic strain in the solder balls and copper pads served as the criteria for comparison.

Findings

The simplified hypotheses were validated through quantitative and qualitative comparisons of the results from various models. Consequently, it was determined that the replacement of dynamic loading with equivalent static loading had no significant impact on the results. Similarly, substituting the spherical shape of interconnections with an equivalent shape and transitioning from a three-dimensional approach to a two-dimensional one did not substantially affect the precision of the obtained results.

Originality/value

This study serves as a valuable resource for researchers seeking to model accelerated reliability tests, particularly in the context of four-point bending tests. The results obtained in this study will assist other researchers in streamlining their numerical models, thereby reducing calculation costs through the utilization of the simplified hypotheses introduced and validated herein.

Details

Microelectronics International, vol. 41 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 14 August 2024

José Arias-Pérez, Carlos Alberto Frantz dos Santos, Juan Velez-Ocampo and Aurora Carneiro Zen

The objective of this article is to analyze the mediating role of innovation capability—both radical and incremental—between technological turbulence and digital innovation…

Abstract

Purpose

The objective of this article is to analyze the mediating role of innovation capability—both radical and incremental—between technological turbulence and digital innovation ecosystem performance, considering the impact of cross-organizational knowledge sabotage. Despite the enthusiasm surrounding digitization, the high failure rate (80%) of digital transformation projects has received limited attention. This alarming statistic indicates a potential rise in opportunistic behaviors within organizations. We hypothesize that employees seeking to reduce the risk of being displaced by digital technologies, may not only hide knowledge, as previously observed, but also engage in knowledge sabotage by disseminating inaccurate information during the co-creation of digital innovations within the digital innovation ecosystem.

Design/methodology/approach

The study employed structural equation modeling to examine moderated mediation using survey data collected from 148 firms, mainly from sectors of high to medium levels of digital intensity.

Findings

The most significant finding indicates that cross-organizational knowledge sabotage considerably reduces the only mediating effect, namely that of incremental innovation capability.

Originality/value

Our study presents a novel perspective by investigating the phenomenon of cross-organizational knowledge sabotage. Unlike prior research, which primarily identified the existence of knowledge hiding, our findings suggest that employees are not only willing to withhold information but also to disseminate inaccurate information to external partners. Consequently, our research extends the boundaries of the existing knowledge field by demonstrating that cross-organizational knowledge sabotage has repercussions that extend beyond intra-organizational impacts, as previously recognized. It also adversely affects the outcomes of collaborative work within the digital innovation ecosystem.

Details

Journal of Strategy and Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1755-425X

Keywords

Article
Publication date: 28 February 2024

Sílvio Aparecido Verdério Júnior, Pedro J. Coelho and Vicente Luiz Scalon

The purpose of this study is to numerically investigate the geometric influence of different corrugation profiles (rectangular, trapezoidal and triangular) of varying heights on…

Abstract

Purpose

The purpose of this study is to numerically investigate the geometric influence of different corrugation profiles (rectangular, trapezoidal and triangular) of varying heights on the flow and the natural convection heat transfer process over isothermal plates.

Design/methodology/approach

This work is an extension and finalization of previous studies of the leading author. The numerical methodology was proposed and experimentally validated in previous studies. Using OpenFOAM® and other free and open-source numerical-computational tools, three-dimensional numerical models were built to simulate the flow and the natural convection heat transfer process over isothermal corrugation plates with variable and constant heights.

Findings

The influence of different geometric arrangements of corrugated plates on the flow and natural convection heat transfer over isothermal plates is investigated. The influence of the height ratio parameter, as well as the resulting concave and convex profiles, on the parameters average Nusselt number, corrected average Nusselt number and convective thermal efficiency gain, is analyzed. It is shown that the total convective heat transfer and the convective thermal efficiency gain increase with the increase of the height ratio. The numerical results confirm previous findings about the predominant effects on the predominant impact of increasing the heat transfer area on the thermal efficiency gain in corrugated surfaces, in contrast to the adverse effects caused on the flow. In corrugations with heights resulting in concave profiles, the geometry with triangular corrugations presented the highest total convection heat transfer, followed by trapezoidal and rectangular. For arrangements with the same area, it was demonstrated that corrugations of constant and variable height are approximately equivalent in terms of natural convection heat transfer.

Practical implications

The results allowed a better understanding of the flow characteristics and the natural convection heat transfer process over isothermal plates with corrugations of variable height. The advantages of the surfaces studied in terms of increasing convective thermal efficiency were demonstrated, with the potential to be used in cooling systems exclusively by natural convection (or with reduced dependence on forced convection cooling systems), including in technological applications of microelectronics, robotics, internet of things (IoT), artificial intelligence, information technology, industry 4.0, etc.

Originality/value

To the best of the authors’ knowledge, the results presented are new in the scientific literature. Unlike previous studies conducted by the leading author, this analysis specifically analyzed the natural convection phenomenon over plates with variable-height corrugations. The obtained results will contribute to projects to improve and optimize natural convection cooling systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 4 April 2024

Chih-Chen Hsu, Kai-Chieh Chia and Yu-Chieh Chang

This study investigates the efficiency of value relevance and faithful representation when stock market price derivates from its firm value to the investigated IT companies listed…

Abstract

This study investigates the efficiency of value relevance and faithful representation when stock market price derivates from its firm value to the investigated IT companies listed in FTSE Taiwan 50. The empirical investigation reveals one financial indicators: Return on equity (ROE) has explanatory ability among seven financial indicators, earnings per share (EPS), book value (BV), dividend yield (Div.), price–earnings ratio (P/E), ROE, return on assets (ROA), and return on operating asset (ROOA) to both sampled companies, United Microelectronics Corporation, UMC, (2303) and Taiwan Semiconductor Manufacturing Company Limited, TSMC, (2330). Furthermore, the empirical results indicate that the higher order moments, skewness and kurtosis, of price deviation do not provide a reliable prediction or explanatory power for stock price trends.

Article
Publication date: 9 July 2024

Adrian Pietruszka, Paweł Górecki and Agata Skwarek

This paper aims to investigate the influence of composite solder joint preparation on the thermal properties of metal-oxide-semiconductor field-effect transistors (MOSFETs) and…

Abstract

Purpose

This paper aims to investigate the influence of composite solder joint preparation on the thermal properties of metal-oxide-semiconductor field-effect transistors (MOSFETs) and the mechanical strength of the soldered joint.

Design/methodology/approach

Reinforced composite solder joints with the addition of titanium oxide nanopowder (TiO2) were prepared. The reference alloy was Sn99Ag0.3Cu0.7. Reinforced joints differed in the weight percentage of TiO2, ranging from 0.125 to 1.0 Wt.%. Two types of components were used for the tests. The resistor in the 0805 package was used for mechanical strength tests, where the component was soldered to the FR4 substrate. For thermal parameters measurements, a power element MOSFET in a TO-263 package was used, which was soldered to a metal core printed circuit board (PCB) substrate. Components were soldered in batch IR oven.

Findings

Shear tests showed that the addition of titanium oxide does not significantly increase the resistance of the solder joint to mechanical damage. Titanium oxide addition was shown to not considerably influence the soldered joint’s mechanical strength compared to reference samples when soldered in batch ovens. Thermal resistance Rthj-a of MOSFETs depends on TiO2 concentration in the composite solder joint reaching the minimum Rthj at 0.25 Wt.% of TiO2.

Research limitations/implications

Mechanical strength: TiO2 reinforcement shows minimal impact on mechanical strength, suggesting altered liquidus temperature and microstructure, requiring further investigation. Thermal performance: thermal parameters vary with TiO2 concentration, with optimal performance at 0.25 Wt.%. Experimental validation is crucial for practical application. Experimental confirmation: validation of optimal concentrations is essential for accurate assessment and real-world application. Soldering method influence: batch oven soldering may affect mechanical strength, necessitating exploration of alternative methods. Thermal vs mechanical enhancement: while TiO2 does not notably enhance mechanical strength, it improves thermal properties, highlighting the need for balanced design in power semiconductor assembly.

Practical implications

Incorporating TiO2 enhances thermal properties in power semiconductor assembly. Optimal concentration balancing thermal performance and mechanical strength must be determined experimentally. Batch oven soldering may influence mechanical strength, requiring evaluation of alternative techniques. TiO2 composite solder joints offer promise in power electronics for efficient heat dissipation. Microstructural analysis can optimize solder joint design and performance. Rigorous quality control during soldering ensures consistent thermal performance and mitigates negative effects on mechanical strength.

Social implications

The integration of TiO2 reinforcement in solder joints impacts thermal properties crucial for power semiconductor assembly. However, its influence on mechanical strength is limited, potentially affecting product reliability. Understanding these effects necessitates collaborative efforts between researchers and industry stakeholders to develop robust soldering techniques. Ensuring optimal TiO2 concentration through experimental validation is essential to maintain product integrity and safety standards. Additionally, dissemination of research findings and best practices can empower manufacturers to make informed decisions, fostering innovation and sustainability in electronic manufacturing processes. Ultimately, addressing these social implications promotes technological advancement while prioritizing consumer trust and product quality in the electronics industry.

Originality/value

The research shows the importance of the soldering technology used to assemble MOSFET devices.

Details

Soldering & Surface Mount Technology, vol. 36 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of 77