Search results

1 – 10 of 18
Article
Publication date: 5 February 2024

Prabir Barman, Srinivasa Rao Pentyala and B.V. Rathish Kumar

A porous cavity flow field generates entropy owing to energy and momentum exchange within the fluid and at solid barriers. The heat transport and viscosity effects on fluid and…

Abstract

Purpose

A porous cavity flow field generates entropy owing to energy and momentum exchange within the fluid and at solid barriers. The heat transport and viscosity effects on fluid and solid walls irreversibly generate entropy. This numerical study aims to investigate convective heat transfer together with entropy generation in a partially heated wavy porous cavity filled with a hybrid nanofluid.

Design/methodology/approach

The governing equations are nondimensionalized and the domain is transformed into a unit square. A second-order finite difference method is used to have numerical solutions to nondimensional unknowns such as stream function and temperature. This numerical computation is conducted to explore a wide range of regulating parameters, e.g. hybrid nano-particle volume fraction (σ = 0.1%, 0.33%, 0.75%, 1%, 2%), Rayleigh–Darcy number (Ra = 10, 102, 103), dimensionless length of the heat source (ϵ = 0.25, 0.50,1.0) and amplitude of the wave (a = 0.05, 0.10, 0.15) for a number of undulations (N = 1, 3) per unit length.

Findings

A thorough analysis is conducted to analyze the effect of multiple factors such as thermal convective forces, heat source, surface corrugation factors, nanofluid volume fraction and other parameters on entropy generation. The flow and temperature fields are studied through streamlines and isotherms. The average Bejan number suggested that entropy generation is entirely dominated by irreversibility due to heat transport at Ra = 10, and the irreversibility due to the viscosity effect is severe at Ra = 103, but the increment in s augments irreversibility due to the viscosity effect over the heat transport at Ra = 102.

Originality/value

To the best of the authors’ knowledge, this numerical study, for the first time, analyzes the influence of surface corrugation on the entropy generation related to the cooling of a partial heat source by the convection of a hybrid nanofluid.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 January 2024

Zhengwei Song, Zhi-Hui Xie, Lifeng Ding and Shengjian Zhang

This paper aims to comprehensively review the preparation methods of superhydrophobic surfaces (SHPS) for corrosion protection of Mg alloy in recent years.

Abstract

Purpose

This paper aims to comprehensively review the preparation methods of superhydrophobic surfaces (SHPS) for corrosion protection of Mg alloy in recent years.

Design/methodology/approach

The preparation methods, wettability and corrosion resistance of SHPS on Mg alloy in the past three years are systematically described in this paper.

Findings

Two types of SHPS, including single-layer and multilayer coatings for corrosion protection of Mg alloy are summarized. Preparing multilayered coatings with multifunction is the current trend in developing SHPS on Mg alloy.

Originality/value

This paper reviewed the preparation methods and corrosion resistance of SHPS on Mg alloys. It provides a valuable reference for researchers to develop highly durable SHPS with excellent corrosion resistance for Mg alloys.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 26 January 2024

Silvia Badini, Serena Graziosi, Michele Carboni, Stefano Regondi and Raffaele Pugliese

This study evaluates the potential of using the material extrusion (MEX) process for recycling waste tire rubber (WTR). By investigating the process parameters, mechanical…

Abstract

Purpose

This study evaluates the potential of using the material extrusion (MEX) process for recycling waste tire rubber (WTR). By investigating the process parameters, mechanical behaviour and morphological characterisation of a thermoplastic polyurethane-waste tire rubber composite filament (TPU-WTR), this study aims to establish a framework for end-of-life tire (ELT) recycling using the MEX technology.

Design/methodology/approach

The research assesses the impact of various process parameters on the mechanical properties of the TPU-WTR filament. Hysteresis analysis and Poisson’s ratio estimation are conducted to investigate the material’s behaviour. In addition, the compressive performance of diverse TPU-WTR triply periodic minimal surface lattices is explored to test the filament suitability for printing intricate structures.

Findings

Results demonstrate the potential of the TPU-WTR filament in developing sustainable structures. The MEX process can, therefore, contribute to the recycling of WTR. Mechanical testing has provided insights into the influence of process parameters on the material behaviour, while investigating various lattice structures has challenged the material’s capabilities in printing complex topologies.

Social implications

This research holds significant social implications addressing the growing environmental sustainability and waste management concerns. Developing 3D-printed sustainable structures using recycled materials reduces resource consumption and promotes responsible production practices for a more environmentally conscious society.

Originality/value

This study contributes to the field by showcasing the use of MEX technology for ELT recycling, particularly focusing on the TPU-WTR filament, presenting a novel approach to sustainable consumption and production aligned with the United Nations Sustainable Development Goal 12.

Article
Publication date: 11 March 2024

Lili Wang, Ying’ao Liu, Jingdong Duan and Yunlong Bao

This study aims to enhance the lubrication performance of thrust bearings. The influence of columnar convex–concave compound microtexture on bearing performance is investigated

Abstract

Purpose

This study aims to enhance the lubrication performance of thrust bearings. The influence of columnar convex–concave compound microtexture on bearing performance is investigated

Design/methodology/approach

Based on the compound microtexture model of thrust bearings, considering surface roughness and turbulent effect, the variation of lubrication characteristics with the change in the compound microtexture parameters is studied.

Findings

The results indicate that, compared with circular microtexture, the maximum pressure of compound microtexture of thrust bearings increases by 7.42%. Optimal bearing performance is achieved when the internal microtexture depth is 0.02 mm. Turbulent flow states and surface roughness lead to a reduction in the optimal depth. The maximum pressure and load-carrying capacity of the bearing decrease as the initial angle increases, whereas the friction coefficient increases with the increase in the initial angle. The lubrication performance is best for bearings with a circumferential parallel arrangement of microtexture.

Originality/value

The novel composite microtexture with columnar convex-concave is proposed, and the computational model of thrust bearings is set. The influence of surface roughness and turbulent flow on the bearing performance should be considered for better conforming with engineering practice. The effect of microtexture depth, arrangement method and distribution position on the lubrication performance of the compound microtexture thrust bearing is investigated, which is of great significance for improving tribology, thrust bearings and surface microtexture theory.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 February 2024

Mohamed Bechir Ben Hamida

This study investigates the impact of three parameters such as: number of LED chips, pitch and LED power on the junction temperature of LEDs using a best heat sink configuration…

Abstract

Purpose

This study investigates the impact of three parameters such as: number of LED chips, pitch and LED power on the junction temperature of LEDs using a best heat sink configuration selected according to a lower temperature. This study provides valuable insights into how to design LED arrays with lower junction temperatures.

Design/methodology/approach

To determine the best configuration of a heat sink, a numerical study was conducted in Comsol Multiphysics on 10 different configurations. The configuration with the lowest junction temperature was selected for further analysis. The number of LED chips, pitch and LED power were then varied to determine the optimal configuration for this heat sink. A general equation for the average LED temperature as a function of these three factors was derived using Minitab software.

Findings

Among 10 configurations of the rectangular heat sink, we deduce that the best configuration corresponds to the first design having 1 mm of width, 0.5 mm of height and 45 mm of length. The average temperature for this design is 50.5 C. For the power of LED equal to 50 W–200 W, the average temperature of this LED drops when the number of LED chips reduces and the pitch size decreases. Indeed, the best array-LED corresponds to 64 LED chips and a pitch size of 0.5 mm. In addition, a generalization equation for average temperature is determined as a function of the number of LED chips, pitch and power of LED which are key factors for reducing the Junction temperature.

Originality/value

The study is original in its focus on three factors that have not been studied together in previous research. A numerical simulation method is used to investigate the impact of the three factors, which is more accurate and reliable than experimental methods. The study considers a wide range of values for the three factors, which allows for a more comprehensive understanding of their impact. It derives a general equation for the average temperature of the LED, which can be used to design LED arrays with desired junction temperatures.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 March 2024

Ramgy Pararajasingam, Anuradha Samarajeewa Waidyasekara and Hasith Chathuranga Victar

Construction material management plays a significant role in achieving successful project delivery of a construction project. However, ineffective material management is a…

Abstract

Purpose

Construction material management plays a significant role in achieving successful project delivery of a construction project. However, ineffective material management is a critical issue in the construction industry, especially in developing economies, of which Sri Lanka is not an exception. Therefore, this study aims to focus on exploring the causes of ineffective material management practices in civil engineering construction projects in Sri Lanka and their impact on successful project delivery.

Design/methodology/approach

Furthermore, the literature findings were validated through the preliminary survey. Subsequently, a quantitative research approach was adopted to pursue the research aim. Questionnaire responses were obtained from 215 construction professionals in civil engineering projects who were selected using the judgemental and snowball sampling techniques. Collected data were analysed through Statistical Package for the Social Sciences (SPSS) V26 and Microsoft Excel 2016.

Findings

Moreover, the study revealed that material price fluctuation, shortage of material in the market, delay in material procurement, inadequate planning and delays in material delivery are the most frequent causes of ineffective material management in civil engineering projects. In addition, it was evidenced that most ineffective material management practices cause both time and cost overruns in civil engineering construction projects. Most respondents emphasized inadequate planning, inadequate qualified and experienced staff, lack of supervision and lack of leadership as the causes for both time and cost overruns.

Originality/value

The study was concluded by proposing strategies for effective material management. Education/training/enlightenment of staff in charge of materials management, use of software like Microsoft Project, Primavera and similar software to eliminate manual errors in material management, and providing clear specifications to suppliers were the most agreed strategies for effective material management in civil engineering construction projects.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 26 March 2024

Zhiqiang Wang

This paper aims to present a novel lightweight distribution grid operating robot system with focus on lightweight and multi-functionality, aiming for autonomous and live-line…

Abstract

Purpose

This paper aims to present a novel lightweight distribution grid operating robot system with focus on lightweight and multi-functionality, aiming for autonomous and live-line maintenance operations.

Design/methodology/approach

A ground-up redesign of the dual-arm robotic system with 12-DoF is applied for substantial weight reduction; a dual-mode operating control framework is proposed, with vision-guided autonomous operation embedded with real-time manual teleoperation controlling both manipulators simultaneously; a quick-swap tooling system is developed to conduct multi-functional operation tasks. A prototype robotic system is constructed and validated in a series of operational experiments in an emulated environment both indoors and outdoors.

Findings

The overall weight of the system is successfully brought down to under 150 kg, making it suitable for the majority of vehicle-mounted aerial work platforms, and it can be flexibly and quickly deployed in population dense areas with narrow streets. The system equips with two dexterous robotic manipulators and up to six interchangeable tools, and a vision system for AI-based autonomous operations. A quick-change tooling system ensures the robot to change tools on-the-go without human intervention.

Originality/value

The resulting dual-arm robotic live-line operation system robotic system could be compact and lightweight enough to be deployed on a wide range of available aerial working platforms with high mobility and efficiency. The robot could both conduct routine operation tasks fully autonomously without human direct operation and be manually operated when required. The quick-swap tooling system enables lightweight and durable interchangeability of multiple end-effector tools, enabling future expansion of operating capabilities across different tasks and operating scenarios.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 April 2024

Ziyan Lu, Feng Qiu, Hui Song and Xianguo Hu

This paper aims to solve the problems molybdenum disulfide (MoS2) nanosheets suffer from inadequate dispersion stability and form a weak lubricating film on the friction surface…

Abstract

Purpose

This paper aims to solve the problems molybdenum disulfide (MoS2) nanosheets suffer from inadequate dispersion stability and form a weak lubricating film on the friction surface, which severely limits their application as lubricant additives.

Design/methodology/approach

MoS2/C60 nanocomposites were prepared by synthesizing molybdenum disulfide (MoS2) nanosheets on the surface of hydrochloric acid-activated fullerenes (C60) by in situ hydrothermal method. The composition, structure and morphology of MoS2/C60 nanocomposites were characterized. Through the high-frequency reciprocating tribology test, its potential as a lubricant additive was evaluated.

Findings

MoS2/C60 nanocomposites that were prepared showed good dispersion in dioctyl sebacate (DOS). When 0.5 Wt.% MoS2/C60 was added, the friction reduction performance and wear resistance improved by 54.5% and 62.7%, respectively.

Originality/value

MoS2/C60 composite nanoparticles were prepared by in-situ formation of MoS2 nanosheets on the surface of C60 activated by HCl through hydrothermal method and were used as potential lubricating oil additives.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2023-0321/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 28 March 2024

Zhong Jin, Xiang Li, Feng He, Fangting Liu, Jinyu Li and Junhui Li

The performance of oil-filled pressure cores is very much affected by the corrugated diaphragm and the oil filling volume. The purpose of this paper is to show the effects of…

Abstract

Purpose

The performance of oil-filled pressure cores is very much affected by the corrugated diaphragm and the oil filling volume. The purpose of this paper is to show the effects of different corrugated diaphragms, different oil filling volumes and different treatments of the corrugated diaphragms on the performance of pressure sensors.

Design/methodology/approach

Pressure-sensitive cores with different diaphragm diameters, different diaphragm ripple numbers and different oil filling volumes are produced, and thermal cycling is introduced to improve the diaphragm performance, and finally the performance of each pressure-sensitive core is tested and the test data are analyzed and compared.

Findings

The experimental results show that the larger the diameter of the corrugated diaphragm used for encapsulation, the better the performance. For pressure-sensitive cores using smaller diameter corrugated diaphragms, the performance of one corrugation is better than that of two corrugations. When the number of corrugations and the diameter are the same size, the performance of the outer ring of the diaphragm with concave corrugations is better than that with convex corrugations. At the same time, the diaphragm after thermal cycling treatment and appropriate reduction of encapsulated oil filling can improve the performance of the pressure-sensitive core.

Originality/value

By exploring the effects of corrugated diaphragm and oil filling volume on the performance of oil-filled pressure cores, the design of oil-filled pressure sensors can be guided to improve sensor performance.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 4 April 2024

Yongjing Wang and Yingwei Liu

The purpose of this paper is to extract electrochemical reaction kinetics parameters, such as Tafel slope, exchange current density and equilibrium potential, which cannot be…

Abstract

Purpose

The purpose of this paper is to extract electrochemical reaction kinetics parameters, such as Tafel slope, exchange current density and equilibrium potential, which cannot be directly measured, this study aims to propose an improved particle swarm optimization (PSO) algorithm.

Design/methodology/approach

In traditional PSO algorithms, each particle’s historical optimal solution is compared with the global optimal solution in each iteration step, and the optimal solution is replaced with a certain probability to achieve the goal of jumping out of the local optimum. However, this will to some extent undermine the (true) optimal solution. In view of this, this study has improved the traditional algorithm: at each iteration of each particle, the historical optimal solution is not compared with the global optimal solution. Instead, after all particles have iterated, the optimal solution is selected and compared with the global optimal solution and then the optimal solution is replaced with a certain probability. This to some extent protects the global optimal solution.

Findings

The polarization curve plotted by this equation is in good agreement with the experimental values, which demonstrates the reliability of this algorithm and provides a new method for measuring electrochemical parameters.

Originality/value

This study has improved the traditional method, which has high accuracy and can provide great support for corrosion research.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 18