Search results

1 – 10 of 40
Open Access
Article
Publication date: 13 February 2024

Daniel de Abreu Pereira Uhr, Mikael Jhordan Lacerda Cordeiro and Júlia Gallego Ziero Uhr

This research assesses the economic impact of biomass plant installations on Brazilian municipalities, focusing on (1) labor income, (2) sectoral labor income and (3) income…

Abstract

Purpose

This research assesses the economic impact of biomass plant installations on Brazilian municipalities, focusing on (1) labor income, (2) sectoral labor income and (3) income inequality.

Design/methodology/approach

Municipal data from the Annual Social Information Report, the National Electric Energy Agency and the National Institute of Meteorology spanning 2002 to 2020 are utilized. The Synthetic Difference-in-Differences methodology is employed for empirical analysis, and robustness checks are conducted using the Doubly Robust Difference in Differences and the Double/Debiased Machine Learning methods.

Findings

The findings reveal that biomass plant installations lead to an average annual increase of approximately R$688.00 in formal workers' wages and reduce formal income inequality, with notable benefits observed for workers in the industry and agriculture sectors. The robustness tests support and validate the primary results, highlighting the positive implications of renewable energy integration on economic development in the studied municipalities.

Originality/value

This article represents a groundbreaking contribution to the existing literature as it pioneers the identification of the impact of biomass plant installation on formal employment income and local economic development in Brazil. To the best of our knowledge, this study is the first to uncover such effects. Moreover, the authors comprehensively examine sectoral implications and formal income inequality.

Details

EconomiA, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1517-7580

Keywords

Article
Publication date: 7 November 2023

Christian Nnaemeka Egwim, Hafiz Alaka, Youlu Pan, Habeeb Balogun, Saheed Ajayi, Abdul Hye and Oluwapelumi Oluwaseun Egunjobi

The study aims to develop a multilayer high-effective ensemble of ensembles predictive model (stacking ensemble) using several hyperparameter optimized ensemble machine learning…

66

Abstract

Purpose

The study aims to develop a multilayer high-effective ensemble of ensembles predictive model (stacking ensemble) using several hyperparameter optimized ensemble machine learning (ML) methods (bagging and boosting ensembles) trained with high-volume data points retrieved from Internet of Things (IoT) emission sensors, time-corresponding meteorology and traffic data.

Design/methodology/approach

For a start, the study experimented big data hypothesis theory by developing sample ensemble predictive models on different data sample sizes and compared their results. Second, it developed a standalone model and several bagging and boosting ensemble models and compared their results. Finally, it used the best performing bagging and boosting predictive models as input estimators to develop a novel multilayer high-effective stacking ensemble predictive model.

Findings

Results proved data size to be one of the main determinants to ensemble ML predictive power. Second, it proved that, as compared to using a single algorithm, the cumulative result from ensemble ML algorithms is usually always better in terms of predicted accuracy. Finally, it proved stacking ensemble to be a better model for predicting PM2.5 concentration level than bagging and boosting ensemble models.

Research limitations/implications

A limitation of this study is the trade-off between performance of this novel model and the computational time required to train it. Whether this gap can be closed remains an open research question. As a result, future research should attempt to close this gap. Also, future studies can integrate this novel model to a personal air quality messaging system to inform public of pollution levels and improve public access to air quality forecast.

Practical implications

The outcome of this study will aid the public to proactively identify highly polluted areas thus potentially reducing pollution-associated/ triggered COVID-19 (and other lung diseases) deaths/ complications/ transmission by encouraging avoidance behavior and support informed decision to lock down by government bodies when integrated into an air pollution monitoring system

Originality/value

This study fills a gap in literature by providing a justification for selecting appropriate ensemble ML algorithms for PM2.5 concentration level predictive modeling. Second, it contributes to the big data hypothesis theory, which suggests that data size is one of the most important factors of ML predictive capability. Third, it supports the premise that when using ensemble ML algorithms, the cumulative output is usually always better in terms of predicted accuracy than using a single algorithm. Finally developing a novel multilayer high-performant hyperparameter optimized ensemble of ensembles predictive model that can accurately predict PM2.5 concentration levels with improved model interpretability and enhanced generalizability, as well as the provision of a novel databank of historic pollution data from IoT emission sensors that can be purchased for research, consultancy and policymaking.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 13 August 2021

Habeeb Balogun, Hafiz Alaka and Christian Nnaemeka Egwim

This paper seeks to assess the performance levels of BA-GS-LSSVM compared to popular standalone algorithms used to build NO2 prediction models. The purpose of this paper is to…

1138

Abstract

Purpose

This paper seeks to assess the performance levels of BA-GS-LSSVM compared to popular standalone algorithms used to build NO2 prediction models. The purpose of this paper is to pre-process a relatively large data of NO2 from Internet of Thing (IoT) sensors with time-corresponding weather and traffic data and to use the data to develop NO2 prediction models using BA-GS-LSSVM and popular standalone algorithms to allow for a fair comparison.

Design/methodology/approach

This research installed and used data from 14 IoT emission sensors to develop machine learning predictive models for NO2 pollution concentration. The authors used big data analytics infrastructure to retrieve the large volume of data collected in tens of seconds for over 5 months. Weather data from the UK meteorology department and traffic data from the department for transport were collected and merged for the corresponding time and location where the pollution sensors exist.

Findings

The results show that the hybrid BA-GS-LSSVM outperforms all other standalone machine learning predictive Model for NO2 pollution.

Practical implications

This paper's hybrid model provides a basis for giving an informed decision on the NO2 pollutant avoidance system.

Originality/value

This research installed and used data from 14 IoT emission sensors to develop machine learning predictive models for NO2 pollution concentration.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 20 March 2024

Floriberta Binarti, Pranowo Pranowo, Chandra Aditya and Andreas Matzarakis

This study aims to compare the local climate characteristics of Angkor Wat, Borobudur and Prambanan parks and determine effective strategies for mitigating thermal conditions that…

Abstract

Purpose

This study aims to compare the local climate characteristics of Angkor Wat, Borobudur and Prambanan parks and determine effective strategies for mitigating thermal conditions that could suit Borobudur and Angkor Wat.

Design/methodology/approach

The study employed local climate zone (LCZ) indicators and ten-year historical climate data to identify similarities and differences in local climate characteristics. Satellite imagery processing was used to create maps of LCZ indicators. Meanwhile, microclimate models were used to analyze sky view factors and wind permeability.

Findings

The study found that the three tropical large-scale archaeological parks have low albedo, a medium vegetation index and high impervious surface index. However, various morphological characteristics, aerodynamic properties and differences in temple stone area and altitude enlarge the air temperature range.

Practical implications

Based on the similarities and differences in local climate, the study formulated mitigation strategies to preserve the sustainability of ancient temples and reduce visitors' heat stress.

Originality/value

The local climate characterization of tropical archaeological parks adds to the number of LCZs. Knowledge of the local climate characteristics of tropical archaeological parks can be the basis for improving thermal conditions.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 19 October 2022

Fariba Ramezani, Amir Arjomandi and Charles Harvie

As a by-product of the production process, emissions can follow output fluctuations. Hence, disregarding the relationship between economic fluctuations and emissions could result…

Abstract

Purpose

As a by-product of the production process, emissions can follow output fluctuations. Hence, disregarding the relationship between economic fluctuations and emissions could result in undesirable environmental outcomes. This study aims to investigate the environmental and economic effects of abatement subsidies on overall emissions during business cycles in Australia.

Design/methodology/approach

A real business cycle (RBC) model is devised and parameterised in this paper. RBC models have been recently introduced to environmental policy analysis, and this study contributes to the literature by investigating the effects of a potential subsidy policy in an RBC framework. The model is also calibrated and provides solutions for the Australian economy.

Findings

The authors find that under a steady-state situation, supporting abatement can result in reducing emissions by 6.45% while it imposes welfare costs to the economy (by 0.61%). Simulation results show that an optimal abatement policy should be pro-cyclical, with the abatement subsidy increasing during expansions and decreasing during recessions. As well, in a subsidy policy setting, emissions would react pro-cyclically, i.e. emissions increase (decrease) when the gross domestic product increases (decreases). The abatement reaction by firms, however, is different, because when a positive productivity shock occurs, firms reduce abatement and allocate resources to production. Nonetheless, as time passes, the increased subsidy provides a strong enough incentive to allocate resources to abatement and, subsequently, abatement increases.

Originality/value

This paper investigates how an emission reduction subsidy should be adapted to macroeconomic fluctuations so that it can limit variations in emissions.

Details

Studies in Economics and Finance, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1086-7376

Keywords

Article
Publication date: 5 January 2024

Philippe Masset and Jean-Philippe Weisskopf

The purpose of this study is to evaluate whether a diversification by grape varieties may help wine producers reduce uncertainty in quantity and quality variations due to…

Abstract

Purpose

The purpose of this study is to evaluate whether a diversification by grape varieties may help wine producers reduce uncertainty in quantity and quality variations due to increasingly erratic climate conditions.

Design/methodology/approach

This study hand-collects granular quantity and quality data from wine harvest reports for vintages 2003 to 2017 for the Valais region in Switzerland. The data allows us to obtain detailed data on harvested kilograms/liters and Oechsle/Brix degrees. It is then merged with precise meteorological data over the same sample period. The authors use this data set to capture weather conditions and their impact on harvested quantities and quality. Finally, they build portfolios including different grape varieties to evaluate whether this reduces variations in quality and quantity over vintages.

Findings

The findings highlight that the weather varies relatively strongly over the sample period and that climate hazards such as hail, frost or ensuing vine diseases effectively occur. These strongly impact the harvested quantities but less the quality of the wine. The authors further show that planting different grape varieties allows for a significant reduction in the variation of harvested quantities over time and thus acts as a good solution against climate risk.

Originality/value

The effect of climate change on viticulture is becoming increasingly important and felt and bears real economic and social consequences. This study transposes portfolio diversification which is central to reducing risk in the finance industry, into the wine industry and shows that the same principle holds. The authors thus propose a novel idea on how to mitigate climate risk.

Details

International Journal of Contemporary Hospitality Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-6119

Keywords

Article
Publication date: 9 May 2024

Saeed Reza Mohandes, Atul Kumar Singh, Abdulwahed Fazeli, Saeed Banihashemi, Mehrdad Arashpour, Clara Cheung, Obuks Ejohwomu and Tarek Zayed

Previous research has demonstrated that Digital Twins (DT) are extensively employed to improve sustainable construction methods. Nonetheless, their uptake in numerous nations is…

Abstract

Purpose

Previous research has demonstrated that Digital Twins (DT) are extensively employed to improve sustainable construction methods. Nonetheless, their uptake in numerous nations is still constrained. This study seeks to identify and examine the digital twin’s implementation barriers in construction building projects to augment operational performance and sustainability.

Design/methodology/approach

An iterative two-stage approach was adopted to explore the phenomena under investigation. General DT Implementation Barriers were first identified from extant literature and subsequently explored using primary questionnaire survey data from Hong Kong building industry professionals.

Findings

Survey results illustrated that Lack of methodologies and tools, Difficulty in ensuring a high level of performance in real-time communication, Impossibility of directly measuring all data relevant to the DT, need to share the DT among multiple application systems involving multiple stakeholders and Uncertainties in the quality and reliability of data are the main barriers for adopting digital twins' technology. Moreover, Ginni’s mean difference measure of dispersion showed that the stationary digital twin’s barriers adoption is needed to share the DT among multiple application systems involving multiple stakeholders.

Practical implications

The study’s findings offer valuable guidance to the construction industry. They help stakeholders adopt digital twins' technology, which, in turn, improves cost efficiency and sustainability. This adoption reduces project expenses and enhances environmental responsibility, providing companies a competitive edge in the industry.

Originality/value

This research rigorously explores barriers to Digital Twin (DT) implementation in the Hong Kong construction industry, employing a systematic approach that includes a comprehensive literature review, Ranking Analysis (RII) and Ginni’s coefficient of mean difference (GM). With a tailored focus on Hong Kong, the study aims to identify, analyze and provide novel insights into DT implementation challenges. Emphasizing practical relevance, the research bridges the gap between academic understanding and real-world application, offering actionable solutions for industry professionals, policymakers and researchers. This multifaceted contribution enhances the feasibility and success of DT implementation in construction projects within the Architecture, Engineering and Construction (AEC) sector.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 6 May 2024

Ben Wisner

The transcript provides an overview of the development of the field and changing paradigms in this regard.

Abstract

Purpose

The transcript provides an overview of the development of the field and changing paradigms in this regard.

Design/methodology/approach

The transcript was developed in the context of a United Nations Office for Disaster Risk Reduction (UNDRR) project on the history of disaster risk reduction (DRR).

Findings

The transcript traces the initial discussions of how the At Risk book was conceived and presents new dimensions and challenges within the field.

Originality/value

The interview highlights the importance of the need to document the transitions, developments and paradigm changes in the field over time.

Details

Disaster Prevention and Management: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0965-3562

Keywords

Article
Publication date: 25 December 2023

Isaac Akomea-Frimpong, Jacinta Rejoice Ama Delali Dzagli, Kenneth Eluerkeh, Franklina Boakyewaa Bonsu, Sabastina Opoku-Brafi, Samuel Gyimah, Nana Ama Sika Asuming, David Wireko Atibila and Augustine Senanu Kukah

Recent United Nations Climate Change Conferences recognise extreme climate change of heatwaves, floods and droughts as threatening risks to the resilience and success of…

Abstract

Purpose

Recent United Nations Climate Change Conferences recognise extreme climate change of heatwaves, floods and droughts as threatening risks to the resilience and success of public–private partnership (PPP) infrastructure projects. Such conferences together with available project reports and empirical studies recommend project managers and practitioners to adopt smart technologies and develop robust measures to tackle climate risk exposure. Comparatively, artificial intelligence (AI) risk management tools are better to mitigate climate risk, but it has been inadequately explored in the PPP sector. Thus, this study aims to explore the tools and roles of AI in climate risk management of PPP infrastructure projects.

Design/methodology/approach

Systematically, this study compiles and analyses 36 peer-reviewed journal articles sourced from Scopus, Web of Science, Google Scholar and PubMed.

Findings

The results demonstrate deep learning, building information modelling, robotic automations, remote sensors and fuzzy logic as major key AI-based risk models (tools) for PPP infrastructures. The roles of AI in climate risk management of PPPs include risk detection, analysis, controls and prediction.

Research limitations/implications

For researchers, the findings provide relevant guide for further investigations into AI and climate risks within the PPP research domain.

Practical implications

This article highlights the AI tools in mitigating climate crisis in PPP infrastructure management.

Originality/value

This article provides strong arguments for the utilisation of AI in understanding and managing numerous challenges related to climate change in PPP infrastructure projects.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 13 November 2023

Jamil Jaber, Rami S. Alkhawaldeh and Ibrahim N. Khatatbeh

This study aims to develop a novel approach for predicting default risk in bancassurance, which plays a crucial role in the relationship between interest rates in banks and…

Abstract

Purpose

This study aims to develop a novel approach for predicting default risk in bancassurance, which plays a crucial role in the relationship between interest rates in banks and premium rates in insurance companies. The proposed method aims to improve default risk predictions and assist with client segmentation in the banking system.

Design/methodology/approach

This research introduces the group method of data handling (GMDH) technique and a diversified classifier ensemble based on GMDH (dce-GMDH) for predicting default risk. The data set comprises information from 30,000 credit card clients of a large bank in Taiwan, with the output variable being a dummy variable distinguishing between default risk (0) and non-default risk (1), whereas the input variables comprise 23 distinct features characterizing each customer.

Findings

The results of this study show promising outcomes, highlighting the usefulness of the proposed technique for bancassurance and client segmentation. Remarkably, the dce-GMDH model consistently outperforms the conventional GMDH model, demonstrating its superiority in predicting default risk based on various error criteria.

Originality/value

This study presents a unique approach to predicting default risk in bancassurance by using the GMDH and dce-GMDH neural network models. The proposed method offers a valuable contribution to the field by showcasing improved accuracy and enhanced applicability within the banking sector, offering valuable insights and potential avenues for further exploration.

Details

Competitiveness Review: An International Business Journal , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1059-5422

Keywords

1 – 10 of 40