Search results

1 – 10 of over 9000
Book part
Publication date: 5 October 2018

Nima Gerami Seresht, Rodolfo Lourenzutti, Ahmad Salah and Aminah Robinson Fayek

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and…

Abstract

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and relies on the analysis of uncertain, imprecise and incomplete information, including subjective and linguistically expressed information. Various modelling and computing techniques have been used by construction researchers and applied to practical construction problems in order to overcome these challenges, including fuzzy hybrid techniques. Fuzzy hybrid techniques combine the human-like reasoning capabilities of fuzzy logic with the capabilities of other techniques, such as optimization, machine learning, multi-criteria decision-making (MCDM) and simulation, to capitalise on their strengths and overcome their limitations. Based on a review of construction literature, this chapter identifies the most common types of fuzzy hybrid techniques applied to construction problems and reviews selected papers in each category of fuzzy hybrid technique to illustrate their capabilities for addressing construction challenges. Finally, this chapter discusses areas for future development of fuzzy hybrid techniques that will increase their capabilities for solving construction-related problems. The contributions of this chapter are threefold: (1) the limitations of some standard techniques for solving construction problems are discussed, as are the ways that fuzzy methods have been hybridized with these techniques in order to address their limitations; (2) a review of existing applications of fuzzy hybrid techniques in construction is provided in order to illustrate the capabilities of these techniques for solving a variety of construction problems and (3) potential improvements in each category of fuzzy hybrid technique in construction are provided, as areas for future research.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Article
Publication date: 17 October 2008

Thiago Turchetti Maia, Antônio Pádua Braga and André F. de Carvalho

To create new hybrid algorithms that combine boosting and support vector machines to outperform other known algorithms in selected contexts of binary classification problems.

Abstract

Purpose

To create new hybrid algorithms that combine boosting and support vector machines to outperform other known algorithms in selected contexts of binary classification problems.

Design/methodology/approach

Support vector machines (SVM) are known in the literature to be one of the most efficient learning models for tackling classification problems. Boosting algorithms rely on other classification algorithms to produce different weak hypotheses which are later combined into a single strong hypothesis. In this work the authors combine boosting with support vector machines, namely the AdaBoost.M1 and sequential minimal optimization (SMO) algorithms, to create new hybrid algorithms that outperform standard SVMs in selected contexts. This is achieved by integration with different degrees of coupling, where the four algorithms proposed range from simple black‐box integration to modifications and mergers between AdaBoost.M1 and SMO components.

Findings

The results show that the proposed algorithms exhibited better performance for most problems experimented. It is possible to identify trends of behavior bound to specific properties of the problems solved, where one may hence apply the proposed algorithms in situations where it is known to succeed.

Research limitations/implications

New strategies for combining boosting and SVMs may be further developed using the principles introduced in this paper, possibly resulting in other algorithms with yet superior performance.

Practical implications

The hybrid algorithms proposed in this paper may be used in classification problems with properties that they are known to handle well, thus possibly offering better results than other known algorithms in the literature.

Originality/value

This paper introduces the concept of merging boosting and SVM training algorithms to obtain hybrid solutions with better performance than standard SVMs.

Details

Kybernetes, vol. 37 no. 9/10
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 30 December 2022

Aishwarya Narang, Ravi Kumar and Amit Dhiman

This study seeks to understand the connection of methodology by finding relevant papers and their full review using the “Preferred Reporting Items for Systematic Reviews and…

Abstract

Purpose

This study seeks to understand the connection of methodology by finding relevant papers and their full review using the “Preferred Reporting Items for Systematic Reviews and Meta-Analyses” (PRISMA).

Design/methodology/approach

Concrete-filled steel tubular (CFST) columns have gained popularity in construction in recent decades as they offer the benefit of constituent materials and cost-effectiveness. Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), Gene Expression Programming (GEP) and Decision Trees (DTs) are some of the approaches that have been widely used in recent decades in structural engineering to construct predictive models, resulting in effective and accurate decision making. Despite the fact that there are numerous research studies on the various parameters that influence the axial compression capacity (ACC) of CFST columns, there is no systematic review of these Machine Learning methods.

Findings

The implications of a variety of structural characteristics on machine learning performance parameters are addressed and reviewed. The comparison analysis of current design codes and machine learning tools to predict the performance of CFST columns is summarized. The discussion results indicate that machine learning tools better understand complex datasets and intricate testing designs.

Originality/value

This study examines machine learning techniques for forecasting the axial bearing capacity of concrete-filled steel tubular (CFST) columns. This paper also highlights the drawbacks of utilizing existing techniques to build CFST columns, and the benefits of Machine Learning approaches over them. This article attempts to introduce beginners and experienced professionals to various research trajectories.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 March 2013

Chih‐Fong Tsai, Ya‐Han Hu, Chia‐Sheng Hung and Yu‐Feng Hsu

Customer lifetime value (CLV) has received increasing attention in database marketing. Enterprises can retain valuable customers by the correct prediction of valuable customers…

2444

Abstract

Purpose

Customer lifetime value (CLV) has received increasing attention in database marketing. Enterprises can retain valuable customers by the correct prediction of valuable customers. In the literature, many data mining and machine learning techniques have been applied to develop CLV models. Specifically, hybrid techniques have shown their superiorities over single techniques. However, it is unknown which hybrid model can perform the best in customer value prediction. Therefore, the purpose of this paper is to compares two types of commonly‐used hybrid models by classification+classification and clustering+classification hybrid approaches, respectively, in terms of customer value prediction.

Design/methodology/approach

To construct a hybrid model, multiple techniques are usually combined in a two‐stage manner, in which the first stage is based on either clustering or classification techniques, which can be used to pre‐process the data. Then, the output of the first stage (i.e. the processed data) is used to construct the second stage classifier as the prediction model. Specifically, decision trees, logistic regression, and neural networks are used as the classification techniques and k‐means and self‐organizing maps for the clustering techniques to construct six different hybrid models.

Findings

The experimental results over a real case dataset show that the classification+classification hybrid approach performs the best. In particular, combining two‐stage of decision trees provides the highest rate of accuracy (99.73 percent) and lowest rate of Type I/II errors (0.22 percent/0.43 percent).

Originality/value

The contribution of this paper is to demonstrate that hybrid machine learning techniques perform better than single ones. In addition, this paper allows us to find out which hybrid technique performs best in terms of CLV prediction.

Details

Kybernetes, vol. 42 no. 3
Type: Research Article
ISSN: 0368-492X

Keywords

Open Access
Article
Publication date: 28 April 2023

Prudence Kadebu, Robert T.R. Shoniwa, Kudakwashe Zvarevashe, Addlight Mukwazvure, Innocent Mapanga, Nyasha Fadzai Thusabantu and Tatenda Trust Gotora

Given how smart today’s malware authors have become through employing highly sophisticated techniques, it is only logical that methods be developed to combat the most potent…

Abstract

Purpose

Given how smart today’s malware authors have become through employing highly sophisticated techniques, it is only logical that methods be developed to combat the most potent threats, particularly where the malware is stealthy and makes indicators of compromise (IOC) difficult to detect. After the analysis is completed, the output can be employed to detect and then counteract the attack. The goal of this work is to propose a machine learning approach to improve malware detection by combining the strengths of both supervised and unsupervised machine learning techniques. This study is essential as malware has certainly become ubiquitous as cyber-criminals use it to attack systems in cyberspace. Malware analysis is required to reveal hidden IOC, to comprehend the attacker’s goal and the severity of the damage and to find vulnerabilities within the system.

Design/methodology/approach

This research proposes a hybrid approach for dynamic and static malware analysis that combines unsupervised and supervised machine learning algorithms and goes on to show how Malware exploiting steganography can be exposed.

Findings

The tactics used by malware developers to circumvent detection are becoming more advanced with steganography becoming a popular technique applied in obfuscation to evade mechanisms for detection. Malware analysis continues to call for continuous improvement of existing techniques. State-of-the-art approaches applying machine learning have become increasingly popular with highly promising results.

Originality/value

Cyber security researchers globally are grappling with devising innovative strategies to identify and defend against the threat of extremely sophisticated malware attacks on key infrastructure containing sensitive data. The process of detecting the presence of malware requires expertise in malware analysis. Applying intelligent methods to this process can aid practitioners in identifying malware’s behaviour and features. This is especially expedient where the malware is stealthy, hiding IOC.

Details

International Journal of Industrial Engineering and Operations Management, vol. 5 no. 2
Type: Research Article
ISSN: 2690-6090

Keywords

Article
Publication date: 17 October 2017

Xiling Yao, Seung Ki Moon and Guijun Bi

This paper aims to present a hybrid machine learning algorithm for additive manufacturing (AM) design feature recommendation during the conceptual design phase.

2355

Abstract

Purpose

This paper aims to present a hybrid machine learning algorithm for additive manufacturing (AM) design feature recommendation during the conceptual design phase.

Design/methodology/approach

In the proposed hybrid machine learning algorithm, hierarchical clustering is performed on coded AM design features and target components, resulting in a dendrogram. Existing industrial application examples are used to train a supervised classifier that determines the final sub-cluster within the dendrogram containing the recommended AM design features.

Findings

Through a case study of designing additive manufactured R/C car components, the proposed hybrid machine learning method was proven useful in providing feasible conceptual design solutions for inexperienced designers by recommending appropriate AM design features.

Originality/value

The proposed method helps inexperienced designers who are newly exposed to AM capabilities explore and utilize AM design knowledge computationally.

Details

Rapid Prototyping Journal, vol. 23 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 13 August 2020

Mariam AlKandari and Imtiaz Ahmad

Solar power forecasting will have a significant impact on the future of large-scale renewable energy plants. Predicting photovoltaic power generation depends heavily on climate…

10416

Abstract

Solar power forecasting will have a significant impact on the future of large-scale renewable energy plants. Predicting photovoltaic power generation depends heavily on climate conditions, which fluctuate over time. In this research, we propose a hybrid model that combines machine-learning methods with Theta statistical method for more accurate prediction of future solar power generation from renewable energy plants. The machine learning models include long short-term memory (LSTM), gate recurrent unit (GRU), AutoEncoder LSTM (Auto-LSTM) and a newly proposed Auto-GRU. To enhance the accuracy of the proposed Machine learning and Statistical Hybrid Model (MLSHM), we employ two diversity techniques, i.e. structural diversity and data diversity. To combine the prediction of the ensemble members in the proposed MLSHM, we exploit four combining methods: simple averaging approach, weighted averaging using linear approach and using non-linear approach, and combination through variance using inverse approach. The proposed MLSHM scheme was validated on two real-time series datasets, that sre Shagaya in Kuwait and Cocoa in the USA. The experiments show that the proposed MLSHM, using all the combination methods, achieved higher accuracy compared to the prediction of the traditional individual models. Results demonstrate that a hybrid model combining machine-learning methods with statistical method outperformed a hybrid model that only combines machine-learning models without statistical method.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 16 August 2021

Rajshree Varma, Yugandhara Verma, Priya Vijayvargiya and Prathamesh P. Churi

The rapid advancement of technology in online communication and fingertip access to the Internet has resulted in the expedited dissemination of fake news to engage a global…

1405

Abstract

Purpose

The rapid advancement of technology in online communication and fingertip access to the Internet has resulted in the expedited dissemination of fake news to engage a global audience at a low cost by news channels, freelance reporters and websites. Amid the coronavirus disease 2019 (COVID-19) pandemic, individuals are inflicted with these false and potentially harmful claims and stories, which may harm the vaccination process. Psychological studies reveal that the human ability to detect deception is only slightly better than chance; therefore, there is a growing need for serious consideration for developing automated strategies to combat fake news that traverses these platforms at an alarming rate. This paper systematically reviews the existing fake news detection technologies by exploring various machine learning and deep learning techniques pre- and post-pandemic, which has never been done before to the best of the authors’ knowledge.

Design/methodology/approach

The detailed literature review on fake news detection is divided into three major parts. The authors searched papers no later than 2017 on fake news detection approaches on deep learning and machine learning. The papers were initially searched through the Google scholar platform, and they have been scrutinized for quality. The authors kept “Scopus” and “Web of Science” as quality indexing parameters. All research gaps and available databases, data pre-processing, feature extraction techniques and evaluation methods for current fake news detection technologies have been explored, illustrating them using tables, charts and trees.

Findings

The paper is dissected into two approaches, namely machine learning and deep learning, to present a better understanding and a clear objective. Next, the authors present a viewpoint on which approach is better and future research trends, issues and challenges for researchers, given the relevance and urgency of a detailed and thorough analysis of existing models. This paper also delves into fake new detection during COVID-19, and it can be inferred that research and modeling are shifting toward the use of ensemble approaches.

Originality/value

The study also identifies several novel automated web-based approaches used by researchers to assess the validity of pandemic news that have proven to be successful, although currently reported accuracy has not yet reached consistent levels in the real world.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 14 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 16 November 2022

Sanaz Faridi, Mahdi Madanchi Zaj, Amir Daneshvar, Shadi Shahverdiani and Fereydoon Rahnamay Roodposhti

This paper presents a combined method of ensemble learning and genetics to rebalance the corporate portfolio. The primary purpose of this paper is to determine the amount of…

Abstract

Purpose

This paper presents a combined method of ensemble learning and genetics to rebalance the corporate portfolio. The primary purpose of this paper is to determine the amount of investment in each of the shares of the listed company and the time of purchase, holding or sale of shares to maximize total return and reduce investment risk.

Design/methodology/approach

To achieve the goals of the problem, a two-level combined intelligent method, such as a support vector machine, decision tree, network Bayesian, k-nearest neighbors and multilayer perceptron neural network as heterogeneous basic models of ensemble learning in the first level, was applied. Then, the majority vote method (weighted average) in the second stage as the final model of learning was collectively used. Therefore, the data collected from 208 listed companies active in the Tehran stock exchange (http://tsetmc.com) from 2011 to 2015 have been used to teach the data. For testing and analysis, the data of the same companies between 2016 and 2020 have been used.

Findings

The results showed that the method of combined ensemble learning and genetics has the highest total stock portfolio yield of 114.12%, with a risk of 0.905%. Also, by examining the rate of return on capital, it was observed that the proposed method has the highest average rate of return on investment of 110.64%. As a result, the proposed method leads to higher returns with lower risk than the purchase and maintenance method for fund managers and companies and predicts market trends.

Research limitations/implications

In the forthcoming research, there were no limitations to obtain research data were easily extracted from the site of Tehran Stock Exchange Technology Management Company and Rahvard Novin software, and simulation was performed in MATLAB software.

Practical implications

In this paper, using combined machine learning methods, companies’ stock prices are predicted and stock portfolio optimization is optimized. As companies and private organizations are trying to increase their rate of return, so they need a way to predict stock prices based on specific indicators. It turned out that this algorithm has the highest stock portfolio return with reasonable investment risk, and therefore, investors, portfolio managers and market timers can be used this method to optimize the stock portfolio.

Social implications

The homogeneous and heterogeneous two-level hybrid model presented in the research can be used to predict market trends by market timers and fund managers. Also, adjusting the portfolio with this method has a much higher return than the return on buying and holding, and with controlled risk, it increases the security of investors’ capital, and investors invest their capital in the funds more safely. And will achieve their expected returns. As a result, the psychological security gained from using this method for portfolio arrangement will eventually lead to the growth of the capital market.

Originality/value

This paper tries to present the best combination of stock portfolios of active companies of the Tehran Stock Exchange by using the two-level combined intelligent method and genetic algorithm.

Details

Journal of Financial Reporting and Accounting, vol. 21 no. 1
Type: Research Article
ISSN: 1985-2517

Keywords

Article
Publication date: 21 December 2023

Majid Rahi, Ali Ebrahimnejad and Homayun Motameni

Taking into consideration the current human need for agricultural produce such as rice that requires water for growth, the optimal consumption of this valuable liquid is…

Abstract

Purpose

Taking into consideration the current human need for agricultural produce such as rice that requires water for growth, the optimal consumption of this valuable liquid is important. Unfortunately, the traditional use of water by humans for agricultural purposes contradicts the concept of optimal consumption. Therefore, designing and implementing a mechanized irrigation system is of the highest importance. This system includes hardware equipment such as liquid altimeter sensors, valves and pumps which have a failure phenomenon as an integral part, causing faults in the system. Naturally, these faults occur at probable time intervals, and the probability function with exponential distribution is used to simulate this interval. Thus, before the implementation of such high-cost systems, its evaluation is essential during the design phase.

Design/methodology/approach

The proposed approach included two main steps: offline and online. The offline phase included the simulation of the studied system (i.e. the irrigation system of paddy fields) and the acquisition of a data set for training machine learning algorithms such as decision trees to detect, locate (classification) and evaluate faults. In the online phase, C5.0 decision trees trained in the offline phase were used on a stream of data generated by the system.

Findings

The proposed approach is a comprehensive online component-oriented method, which is a combination of supervised machine learning methods to investigate system faults. Each of these methods is considered a component determined by the dimensions and complexity of the case study (to discover, classify and evaluate fault tolerance). These components are placed together in the form of a process framework so that the appropriate method for each component is obtained based on comparison with other machine learning methods. As a result, depending on the conditions under study, the most efficient method is selected in the components. Before the system implementation phase, its reliability is checked by evaluating the predicted faults (in the system design phase). Therefore, this approach avoids the construction of a high-risk system. Compared to existing methods, the proposed approach is more comprehensive and has greater flexibility.

Research limitations/implications

By expanding the dimensions of the problem, the model verification space grows exponentially using automata.

Originality/value

Unlike the existing methods that only examine one or two aspects of fault analysis such as fault detection, classification and fault-tolerance evaluation, this paper proposes a comprehensive process-oriented approach that investigates all three aspects of fault analysis concurrently.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 10 of over 9000