Search results

1 – 10 of 10
Article
Publication date: 9 April 2024

Kunal Kumar Singh, Santosh Kumar Mahto and Rashmi Sinha

The purpose of this study is to introduce a new type of sensor which uses microwave metamaterials and direct-coupled split-ring resonators (DC-SRRs) to measure the dielectric…

Abstract

Purpose

The purpose of this study is to introduce a new type of sensor which uses microwave metamaterials and direct-coupled split-ring resonators (DC-SRRs) to measure the dielectric properties of solid materials in real time. The sensor uses a transmission line with a bridge-type structure to measure the differential frequency, which can be used to calculate the dielectric constant of the material being tested. The study aims to establish an empirical relationship between the dielectric properties of the material and the frequency measurements obtained from the sensor.

Design/methodology/approach

In the proposed design, the opposite arm of the bridge transmission line is loaded by DC-SRRs, and the distance between DC-SRRs is optimized to minimize the mutual coupling between them. The DC-SRRs are loaded with the material under test (MUT) to perform differential permittivity sensing. When identical MUT is placed on both resonators, a single transmission zero (notch) is obtained, but non-identical MUTs exhibit two split notches. For the design of differential sensors and comparators based on symmetry disruption, frequency splitting is highly useful.

Findings

The proposed structure is demonstrated using electromagnetic simulation, and a prototype of the proposed sensor is fabricated and experimentally validated to prove the differential sensing principle. Here, the sensor is analyzed for sensitivity by using different MUTs with relative permittivity ranges from 1.006 to 10 and with a fixed dimension of 9 mm × 10 mm ×1.2 mm. It shows a very good average frequency deviation per unit change in permittivity of the MUTs, which is around 743 MHz, and it also exhibits a very high average relative sensitivity and quality factor of around 11.5% and 323, respectively.

Originality/value

The proposed sensor can be used for differential characterization of permittivity and also as a comparator to test the purity of solid dielectric samples. This sensor most importantly strengthens robustness to environmental conditions that cause cross-sensitivity or miscalibration. The accuracy of the measurement is enhanced as compared to conventional single- and double-notch metamaterial-based sensors.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 20 March 2023

Kunal Kumar Singh, Santosh Kumar Mahto and Rashmi Sinha

This paper aims to concentrate on research that has been conducted in the previous decade on metamaterial (MTM)-based sensors for material characterization, which includes solid…

Abstract

Purpose

This paper aims to concentrate on research that has been conducted in the previous decade on metamaterial (MTM)-based sensors for material characterization, which includes solid dielectrics, micro fluids and biomolecules.

Design/methodology/approach

There has been a vast advancement in sensors based on MTM since the past few decades. MTM elements provide a sensitive response to materials while having a tiny footprint, making them an appealing alternative for realizing diverse sensing devices.

Findings

Related research papers on MTM sensors published in reputable journals were reviewed in this report, with a specific emphasis on the structure, size and nature of the materials characterized. Because electromagnetic wave interaction excites MTM structures, sensing applications around the electromagnetic spectrum are possible.

Originality/value

The paper contains valuable information on MTM sensor technology for material characterization, and this study also highlights the challenges and approaches that will guide future development.

Details

Sensor Review, vol. 43 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 16 June 2022

Kunal Kumar Singh, Santosh Kumar Mahto, Rashmi Sinha and Vishnu Priye

The purpose of this paper is to retrieve the dielectric constant of the material under test (MUT) by using an empirical relationship, which relates the dielectric properties with…

Abstract

Purpose

The purpose of this paper is to retrieve the dielectric constant of the material under test (MUT) by using an empirical relationship, which relates the dielectric properties with all three resonant frequencies of the proposed sensor. Each notch of the sensor is analyzed for sensitivity by using 15 different MUTs with relative permittivity ranging from 1.006 to 16.5 with a fixed dimension of 12 mm × 12 mm × 1.2 mm.

Design/methodology/approach

In this paper, we present a triple-notch metamaterial-based sensor for the solid dielectric characterization based on a microstrip transmission line and a direct coupled-double split ring resonator (DC-DSRR). The proposed sensor is designed, and its response is measured using a vector network analyzer to verify the concept. The shift in the resonant frequencies of the proposed sensor owing to contact with MUT is depicted as a function of permittivity using the curve fitting tool.

Findings

The proposed sensors have three notches, with the third notch being more sensitive than the first and second notch because of the high resonance frequency. For the first, second and third resonances, the proposed sensor has sensitivity ranges from 4.9% to 14.68%, 8.97% to 23.95% and 15.48% to 29.36%, respectively. The findings of the simulations, measurements and formulations are all in good accord.

Originality/value

In comparison to previous solid dielectric metamaterial sensors, the proposed triple-notch sensor based on a microstrip transmission line and DC-DSRR has the following advantages: it has a simple unit-cell structure and meets the needs of miniaturization, compact size, low cost and improved sensitivity. It determines the relative permittivity using all three notches so that the accuracy of the measurement is enhanced as compared with single- and double-notch sensors.

Details

Sensor Review, vol. 42 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 17 December 2018

A. Vivek, K. Shambavi and Zachariah C. Alex

This paper aims to focus on research work related to metamaterial-based sensors for material characterization that have been developed for past ten years. A decade of research on…

1331

Abstract

Purpose

This paper aims to focus on research work related to metamaterial-based sensors for material characterization that have been developed for past ten years. A decade of research on metamaterial for sensing application has led to the advancement of compact and improved sensors.

Design/methodology/approach

In this study, relevant research papers on metamaterial sensors for material characterization published in reputed journals during the period 2007-2018 were reviewed, particularly focusing on shape, size and nature of materials characterized. Each sensor with its design and performance parameters have been summarized and discussed here.

Findings

As metamaterial structures are excited by electromagnetic wave interaction, sensing application throughout electromagnetic spectrum is possible. Recent advancement in fabrication techniques and improvement in metamaterial structures have led to the development of compact, label free and reversible sensors with high sensitivity.

Originality/value

The paper provides useful information on the development of metamaterial sensors for material characterization.

Details

Sensor Review, vol. 39 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 28 October 2014

Richard Tarparelli, Renato Iovine, Luigi La Spada and Lucio Vegni

– The purpose of this paper is to contribute an analytical and numerical study of a new type of nanoshell particles operating in the visible regime.

Abstract

Purpose

The purpose of this paper is to contribute an analytical and numerical study of a new type of nanoshell particles operating in the visible regime.

Design/methodology/approach

The structure consists of a core/shell particle, arranged in a planar array configuration, with a polymethyl methacrylate (PMMA)-graphene core and gold thin shell.

Findings

By exploiting the proposed analytical model the design of a metamaterial-based sensor, operating in the optical frequency range, for the detection of tissue diseases is shown.

Originality/value

Full-wave simulations confirm the capability of the proposed sensor to identify different compounds by refractive index measurement.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Content available
Article
Publication date: 28 June 2011

412

Abstract

Details

Sensor Review, vol. 31 no. 3
Type: Research Article
ISSN: 0260-2288

Article
Publication date: 19 June 2017

Robert Bogue

This paper aims to provide a technical insight into a selection of recent developments of sensor based on metamaterials.

633

Abstract

Purpose

This paper aims to provide a technical insight into a selection of recent developments of sensor based on metamaterials.

Design/methodology/approach

Following a short introduction, this first part discusses sensors based on acoustic metamaterials. It then briefly considers negative index materials and split ring resonators and provides examples of sensors based on metamaterials which interact with electromagnetic radiation in the microwave, terahertz and infra-red regions. Finally, brief concluding comments are drawn.

Findings

Since their discovery at around the turn of the century, metamaterials have been studied widely by the research community. A diverse range of sensors and imaging devices have since been developed which exploit the unique properties of these materials and respond to physical, chemical and biological variables. Many exhibit characteristics and capabilities with the potential to overcome the limitations of conventional devices.

Originality/value

This provides details of a range of recently developed sensors based on the newly discovered families of metamaterials.

Details

Sensor Review, vol. 37 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 7 March 2023

Nour Mohammad Murad, Antonio Jaomiary, Samar Yazdani, Fayrouz Haddad, Mathieu Guerin, George Chan, Wenceslas Rahajandraibe and Sahbi Baccar

This paper aims to develop high-pass (HP) negative group delay (NGD) investigation based on three-port lumped circuit. The main particularity of the proposed three-port passive…

Abstract

Purpose

This paper aims to develop high-pass (HP) negative group delay (NGD) investigation based on three-port lumped circuit. The main particularity of the proposed three-port passive topology is the consideration of only a single circuit element represented by a capacitor.

Design/methodology/approach

The methodology of the paper is to consider the S-matrix equivalent model derived from admittance matrix approach. So, an S-matrix equivalent model of a three-port circuit topology is established from admittance matrix approach. The frequency-dependent basic expressions are explored to perform the HP-NGD analysis. Then, the existence condition of HP-NGD function type is analytically demonstrated. The specific characteristics and synthesis equations of HP-NGD circuit with respect to the desired optimal NGD value are established.

Findings

After computing the frequency expressions to perform the HP-NGD analysis, this study demonstrated the existence condition of HP-NGD function type analytically. The validity of the HP-NGD theory is verified by a prototype of three-port circuit. The proof-of-concept (POC) single capacitor three-port circuit presents an NGD response and characteristics from analytical calculation and simulation is in very good correlation.

Originality/value

An innovative theory of HP-NGD three-port circuit is studied. The proposed HP-NGD topology is constituted by only a single capacitor. After the topological description, the S-matrix model is established from the Y-matrix by means of Kirchhoff voltage law and Kirchhoff current law equations. A POC of single capacitor three-port circuit was designed and simulated with a commercial tool. Then, a prototype with a surface-mounted device component was fabricated and tested. As expected, simulation and measurement results in very good agreement with the calculated model show the feasibility of the HP-NGD behavior. This work is compared to other NGD-type function with diverse number of ports and components.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 July 2020

Elakkiya A., Radha Sankararajan, Sreeja B.S. and Manikandan E.

A novel and simple six-band metamaterial absorber is proposed in the terahertz region, which is composed of an I-shaped absorber and circular ring with four gaps and a continuous…

Abstract

Purpose

A novel and simple six-band metamaterial absorber is proposed in the terahertz region, which is composed of an I-shaped absorber and circular ring with four gaps and a continuous metal ground plane separated by only 0.125 mm polyimide dielectric substrate. Initially, I-shaped resonator gives three bands at 0.4, 0.468 and 0.4928 THz with the absorptivity of 99.3%, 97.9% and 99.1%, respectively. The purpose of this paper is to improve the number of bands, for which the authors added the circular ring with four gaps, so the simulated metamaterial absorber exhibited six absorption peaks at 0.3392, 0.3528, 0.3968, 0.4676, 0.4768 and 0.492 THz, with the absorption rate of 91.4%, 94.2%, 94.9%, 90.3%, 77.5% and 97.4%, respectively. The surface current distribution and angle independence are explained for all the six frequencies which are used to analyze the absorption mechanism clearly. Structure maximum uses the squares and circles, so it will make the fabrication easy. The multiband absorbers obtained here have potential applications in many engineering technology, thermal radiation, material detection and imaging and optoelectronic areas.

Design/methodology/approach

This paper presents the design of the six-band metamaterial absorber which is from the I-shaped resonator and circular ring with four gaps and the metallic ground plane separated by the 0.125 polyimide dielectric substrate. The absorber exhibited six absorption peaks at 0.3392, 0.3528, 0.3968, 0.4676, 0.4768 and 0.492 THz, with the absorption rate of 91.4%, 94.2%, 94.9%, 90.3%, 77.5% and 97.4%, respectively. From the fabrication point of view, the proposed six-band metamaterial absorber has a very simple geometrical structure, and it is very easy to be fabricated.

Findings

The authors present a new and simple design of six-band absorber based on an I-shaped absorber and circular ring with four gaps and a metallic ground plane separated by a polyimide layer having the thickness of 0.125 mm. Six different resonance absorption peaks are found at 0.3392, 0.3528, 0.3968, 0.4676 , 0.4768 and 0.492 THz. Surface current distribution and angle independence plot have been studied to understand the absorption behavior of the designed terahertz metamaterial absorber.

Originality/value

The multiband absorbers obtained here have potential applications in many engineering technology, thermal radiation, material detection, security, sensors, imaging and optoelectronic areas.

Details

Circuit World, vol. 46 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 13 June 2023

Atul Varshney, Vipul Sharma, T. Mary Neebha and N. Prasanthi Kumari

This paper aims to present a low-cost, edge-fed, windmill-shaped, notch-band eliminator, circular monopole antenna which is practically loaded with a complementary split ring…

Abstract

Purpose

This paper aims to present a low-cost, edge-fed, windmill-shaped, notch-band eliminator, circular monopole antenna which is practically loaded with a complementary split ring resonator (CSRR) in the middle of the radiating conductor and also uses a partial ground to obtain wide-band performance.

Design/methodology/approach

To compensate for the reduced value of gain and reflection coefficient because of the full (complete) ground plane at the bottom of the substrate, the antenna is further loaded with a partial ground and a CSRR. The reduction in the length of ground near the feed line improves the impedance bandwidth, and introduced CSRR results in improved gain with an additional resonance spike. This results in a peak gain 3.895dBi at the designed frequency 2.45 GHz. The extending of three arms in the circular patch not only led to an increase of peak gain by 4.044dBi but also eliminated the notch band and improved the fractional bandwidth 1.65–2.92 GHz.

Findings

The work reports a –10dB bandwidth from 1.63 GHz to 2.91 GHz, which covers traditional coverage applications and new specific uses applications such as narrow LTE bands for future internet of things (NB-IoT) machine-to-machine communications 1.8/1.9/2.1/2.3/2.5/2.6 GHz, industry, automation and business-critical cases (2.1/2.3/2.6 GHz), industrial, society and medical applications such as Wi-MAX (3.5 GHz), Wi-Fi3 (2.45 GHz), GSM (1.9 GHz), public safety band, Bluetooth (2.40–2.485 GHz), Zigbee (2.40–2.48Ghz), industrial scientific medical (ISM) band (2.4–2.5 GHz), WCDMA (1.9, 2.1 GHz), 3 G (2.1 GHz), 4 G LTE (2.1–2.5 GHz) and other personal communication services applications. The estimated RLC electrical equivalent circuit is also presented at the end.

Practical implications

Because of full coverage of Bluetooth, Zigbee, WiFi3 and ISM band, the proposed fabricated antenna is suitable for low power, low data rate and wireless/wired short-range IoT-enabled medical applications.

Originality/value

The antenna is fabricated on a piece (66.4 mm × 66.4 mm × 1.6 mm) of low-cost low profile FR-4 epoxy substrate (0.54 λg × 0.54 λg) with a dielectric constant of 4.4, a loss tangent of 0.02 and a thickness of 1.6 mm. The antenna reflection coefficient, impedance and VSWR are tested on the Keysight technology (N9917A) vector network analyzer, and the radiation pattern is measured in an anechoic chamber.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 10