Search results

1 – 10 of over 1000
Article
Publication date: 2 March 2012

Behrokh Khoshnevis, Mahdi Yoozbashizadeh and Yong Chen

The purpose of this paper is to investigate the fundamentals of the selective inhibition sintering (SIS) process for fabricating dense metallic parts.

Abstract

Purpose

The purpose of this paper is to investigate the fundamentals of the selective inhibition sintering (SIS) process for fabricating dense metallic parts.

Design/methodology/approach

A SIS‐Metal process based on the microscopic mechanical inhibition is developed. In the process, salt solution is printed in the selected area of each powder layer; the salt re‐crystallizes when water evaporates; salt crystals decompose and grow rapidly prior to sintering; the generated salt particles spread between metal powder particles and prevent the fusing of these particles together, hence inhibiting the sintering process in the affected regions.

Findings

The SIS‐Metal process has numerous advantages. An inhibition of sintering mechanism is established for the future development of the technology. Through chemical and visual analysis using STM the mechanism for the inhibition phenomenon has been identified.

Research limitations/implications

Only bronze powder has been used in the research. Accordingly, the inhibition chemical has been engineered for this material choice. The approach should be feasible for other metals but a proper inhibitor would need to be found for each material choice.

Practical implications

The only limitation envisioned for the process may be the removal after sintering of inhibited sections in hard‐to reach areas using physical means such as scraping or vibration. Chemical removal of such sections should be possible, however.

Originality/value

The paper illustrates a new additive manufacturing technology for metallic parts fabrication.

Article
Publication date: 16 March 2015

Payman Torabi, Matthew Petros and Behrokh Khoshnevis

The purpose of this paper is to study the implementation of a commercial piezoelectric printhead in the fabrication of high-resolution metal parts selective inhibition sintering…

Abstract

Purpose

The purpose of this paper is to study the implementation of a commercial piezoelectric printhead in the fabrication of high-resolution metal parts selective inhibition sintering (SIS-metal). SIS is a disruptive platform additive manufacturing (AM) process capable of printing parts from polymer, metal and ceramic base materials.

Design/methodology/approach

The developed system in this paper replaces the single-nozzle solenoid valve previously used in the SIS-metal process and allows for the fabrication of high-resolution parts. A design of experiments approach is utilized to study the effects of important factors in inhibitor deposition. These factors include: composition of the inhibitor, quality of the print and the amount of fluid deposited for each layer. Based on the results of these experiments, parameters have been identified for the creation of 3D parts.

Findings

The results of this study were based on the fine tuning of parameters in the updated SIS-metal machine which culminated in the fabrication of complex metallic parts. This study serves as an entry point to important areas of research in need of careful future consideration. These areas include but are not limited to machine robustness, mechanical properties, shrinkage and surface quality.

Originality/value

SIS-metal is a novel AM process developed by the CRAFT Laboratories team at the University of Southern California with potential to compete existing metal AM processes in terms of quality, price, materials and speed. The machine developed in this study signifies an order of magnitude improvement in the resolution and quality of SIS-metal parts which are comparable to those fabricated by other AM processes.

Details

Rapid Prototyping Journal, vol. 21 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 September 2019

Yifeng Li, Xunpeng Qin, Qiang Wu, Zeqi Hu and Tan Shao

Robotic wire and arc additive manufacturing (RWAAM) is becoming more and more popular for its capability of fabricating metallic parts with complicated structure. To unlock the…

377

Abstract

Purpose

Robotic wire and arc additive manufacturing (RWAAM) is becoming more and more popular for its capability of fabricating metallic parts with complicated structure. To unlock the potential of 6-DOF industrial robots and improve the power of additive manufacturing, this paper aims to present a method to fabricate curved overhanging thin-walled parts free from turn table and support structures.

Design/methodology/approach

Five groups of straight inclined thin-walled parts with different angles were fabricated with the torch aligned with the inclination angle using RWAAM, and the angle precision was verified by recording the growth of each layer in both horizontal and vertical directions; furthermore, the experimental phenomena was explained with the force model of the molten pool and the forming characteristics was investigated. Based on the results above, an algorithm for fabricating curved overhanging thin-walled part was presented and validated.

Findings

The force model and forming characteristics during the RWAAM process were investigated. Based on the result, the influence of the torch orientation on the weld pool flow was used to control the pool flow, then a practical algorithm for fabricating curved overhanging thin-walled part was proposed and validated.

Originality/value

Regarding the fabrication of curved overhanging thin-walled parts, given the influences of the torch angles on the deposited morphology, porosity formation rate and weld pool flow, the flexibility of 6-DOF industrial robot was fully used to realize instant adjustment of the torch angle. In this paper, the deposition point and torch orientation of each layer of a robotic fabrication path was determined by the contour equation of the curve surface. By adjusting the torch angle, the pool flow was controlled and better forming quality was acquired.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 August 2007

G.D. Janaki Ram, C. Robinson, Y. Yang and B.E. Stucker

Ultrasonic consolidation (UC) is a novel additive manufacturing process developed for fabrication of metallic parts from foils. While the process has been well demonstrated for…

3692

Abstract

Purpose

Ultrasonic consolidation (UC) is a novel additive manufacturing process developed for fabrication of metallic parts from foils. While the process has been well demonstrated for part fabrication in Al alloy 3003, some of the potential strengths of the process have not been fully explored. One of them is its suitability for fabrication of parts in multi‐materials. This work aims to examine this aspect.

Design/methodology/approach

Multi‐material UC experiments were conducted using Al alloy 3003 foils as the bulk part material together with a number of engineering materials (foils of Al‐Cu alloy 2024, Ni‐base alloy Inconel 600® AISI 347 stainless steel, and others). Deposit microstructures were studied to evaluate bonding between various materials.

Findings

It was found that most of the materials investigated can be successfully bonded to alloy Al 3003 and vice versa. SiC fibers and stainless wire meshes were successfully embedded in an Al 3003 matrix. The results suggest that the UC process is quite suitable for fabrication of multi‐material structures, including fiber‐reinforced metal matrix composites.

Originality/value

This work systematically examines the multi‐material capability of the UC process. The findings of this work lay a strong foundation for a wider and more efficient commercial utilization of the process.

Details

Rapid Prototyping Journal, vol. 13 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 July 2021

Rajae Jemghili, Abdelmajid Ait Taleb and Mansouri Khalifa

Although many researchers have widely studied additive manufacturing (AM) as one of the most important industrial revolutions, few have presented a bibliometric analysis of the…

Abstract

Purpose

Although many researchers have widely studied additive manufacturing (AM) as one of the most important industrial revolutions, few have presented a bibliometric analysis of the published studies in this area. This paper aims to evaluate AM research trends based on 4607 publications most cited from year 2010 to 2020.

Design/methodology/approach

The research methodology is bibliometric indicators and network analysis, including analysis based on keywords, citation analysis, productive journal, related published papers and authors indicators. Two free available software were employed VOSviewer and Bibexcel.

Findings

Keywords analysis results indicate that among the AM processes, Selective Laser Melting and Fused Deposition Modeling techniques, are the two processes ranked on top of the techniques employed and studied with 35.76% and 20.09% respectively. The citation analysis by VOSviewer software, reveals that the medical applications field and the fabrication of metal parts are the areas that interest researchers greatly. Different new research niches, as pharmaceutical industry, digital construction and food fabrication are growing topics in AM scientific works. This study reveals that journals “Materials & design”, “Advanced materials”, “Acs applied materials & interfaces”, “Additive manufacturing”, “Advanced functional materials” and “Biofabrication” are the most productive and influential in AM scientific research.

Originality/value

The results and conclusions of this work can be used as indicators of trends in AM research and/or as prospects for future studies in this area.

Details

Rapid Prototyping Journal, vol. 27 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 August 2023

Kevin Moj, Robert Owsiński, Grzegorz Robak and Munish Kumar Gupta

Additive manufacturing (AM), a rapidly evolving paradigm, has shown significant advantages over traditional subtractive processing routines by allowing for the custom creation of…

Abstract

Purpose

Additive manufacturing (AM), a rapidly evolving paradigm, has shown significant advantages over traditional subtractive processing routines by allowing for the custom creation of structural components with enhanced performance. Numerous studies have shown that the technical qualities of AM components are profoundly affected by the discovery of novel metastable substructures in diverse alloys. Therefore, the purpose of this study is to determine the effect of cell structure parameters on its mechanical response.

Design/methodology/approach

Initially, a methodology was suggested for testing porous materials, focusing on static tensile testing. For a qualitative evaluation of the cellular structures produced, computed tomography (CT) was used. Then, the CT scanner was used to analyze a sample and determine its actual relative density, as well as perform a detailed geometric analysis.

Findings

The experimental research demonstrates that the mechanical properties of a cell’s structure are significantly influenced by its shape during formation. It was also determined that using selective laser melting to produce cell structures with a minimum single-cell size of approximately 2 mm would be the most appropriate method.

Research limitations/implications

Further studies of cellular structures for testing their static tensile strength are planned for the future. The study will be carried out for a larger number of samples, taking into account a wider range of cellular structure parameters. An important step will also be the verification of the results of the static tensile test using numerical analysis for the model obtained by CT scanning.

Originality/value

The fabrication of metallic parts with different cellular structures is very important with a selective laser melted machine. However, the determination of cell size and structure with mechanical properties is quiet novel in this current investigation.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 27 April 2020

Mojtaba Izadi, Aidin Farzaneh, Mazher Mohammed, Ian Gibson and Bernard Rolfe

This paper aims to present a comprehensive review of the laser engineered net shaping (LENS) process in an attempt to provide the reader with a deep understanding of the…

12288

Abstract

Purpose

This paper aims to present a comprehensive review of the laser engineered net shaping (LENS) process in an attempt to provide the reader with a deep understanding of the controllable and fixed build parameters of metallic parts. The authors discuss the effect and interplay between process parameters, including: laser power, scan speed and powder feed rate. Further, the authors show the interplay between process parameters is pivotal in achieving the desired microstructure, macrostructure, geometrical accuracy and mechanical properties.

Design/methodology/approach

In this manuscript, the authors review current research examining the process inputs and their influences on the final product when manufacturing with the LENS process. The authors also discuss how these parameters relate to important build aspects such as melt-pool dimensions, the volume of porosity and geometry accuracy.

Findings

The authors conclude that studies have greatly enriched the understanding of the LENS build process, however, much studies remains to be done. Importantly, the authors reveal that to date there are a number of detailed theoretical models that predict the end properties of deposition, however, much more study is necessary to allow for reasonable prediction of the build process for standard industrial parts, based on the synchronistic behavior of the input parameters.

Originality/value

This paper intends to raise questions about the possible research areas that could potentially promote the effectiveness of this LENS technology.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 March 2024

Yu-Xiang Wang, Chia-Hung Hung, Hans Pommerenke, Sung-Heng Wu and Tsai-Yun Liu

This paper aims to present the fabrication of 6061 aluminum alloy (AA6061) using a promising laser additive manufacturing process, called the laser-foil-printing (LFP) process…

Abstract

Purpose

This paper aims to present the fabrication of 6061 aluminum alloy (AA6061) using a promising laser additive manufacturing process, called the laser-foil-printing (LFP) process. The process window of AA6061 in LFP was established to optimize process parameters for the fabrication of high strength, dense and crack-free parts even though AA6061 is challenging for laser additive manufacturing processes due to hot-cracking issues.

Design/methodology/approach

The multilayers AA6061 parts were fabricated by LFP to characterize for cracks and porosity. Mechanical properties of the LFP-fabricated AA6061 parts were tested using Vicker’s microhardness and tensile testes. The electron backscattered diffraction (EBSD) technique was used to reveal the grain structure and preferred orientation of AA6061 parts.

Findings

The crack-free AA6061 parts with a high relative density of 99.8% were successfully fabricated using the optimal process parameters in LFP. The LFP-fabricated parts exhibited exceptional tensile strength and comparable ductility compared to AA6061 samples fabricated by conventional laser powder bed fusion (LPBF) processes. The EBSD result shows the formation of cracks was correlated with the cooling rate of the melt pool as cracks tended to develop within finer grain structures, which were formed in a shorter solidification time and higher cooling rate.

Originality/value

This study presents the pioneering achievement of fabricating crack-free AA6061 parts using LFP without the necessity of preheating the substrate or mixing nanoparticles into the melt pool during the laser melting. The study includes a comprehensive examination of both the mechanical properties and grain structures, with comparisons made to parts produced through the traditional LPBF method.

Details

Rapid Prototyping Journal, vol. 30 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 April 2013

Xubin Su, Yongqiang Yang, Di Wang and Yonghua Chen

The purpose of this paper is to obtain more design freedom and realize fast fabrication of mechanism which is the core subsystem of many machines and always consists of several…

1184

Abstract

Purpose

The purpose of this paper is to obtain more design freedom and realize fast fabrication of mechanism which is the core subsystem of many machines and always consists of several parts with assigned relative motion.

Design/methodology/approach

The mechanism is digitally assembled and later directly fabricated by selective laser melting (SLM) without post‐assembly. The joint is re‐designed to facilitate powdered material removal; the displays and the corresponding support additions are discussed to avoid too many supports within the clearances. Then, a series of universal joint are directly fabricated using SLM machine and a minimum clearance of 0.1 mm is obtained; a crank rocker mechanism is also fabricated and it can achieve the required performances.

Findings

The digitally assembled mechanism can be successfully fabricated by SLM technique using metal powdered material.

Originality/value

It is well known that the components fabricated by SLM have good mechanical properties. Therefore, it can be expected that more mechanisms with more design freedom will be developed and be used in some practical fields with improvement of fabrication quality.

Details

Rapid Prototyping Journal, vol. 19 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 December 1998

V. Yevko, C.B. Park, G. Zak, T.W. Coyle and B. Benhabib

Current commercial rapid prototyping systems can be used for fabricating layered models for subsequent creation of fully‐dense metal parts using investment casting. Due to…

1362

Abstract

Current commercial rapid prototyping systems can be used for fabricating layered models for subsequent creation of fully‐dense metal parts using investment casting. Due to increased demand for shortened product development cycles however, there exists a demand to rapidly fabricate functional fully‐dense metal parts without hard tooling. A possible solution to this problem is direct layered rapid manufacturing of such parts, for example, via laser‐beam fusion of the metal powder. The rapid manufacturing process discussed herein is based on this approach. It involves selective laser‐beam scanning of a predeposited metal‐powder layer, forming fully‐dense claddings as the basic building block of individual layers. This paper specifically addresses only one of the fundamental issues of the rapid manufacturing process under investigation at the University of Toronto, namely the fabrication of single claddings. Our theoretical investigation of the influence of the process parameters on cladding’s geometrical properties employed thermal modeling and computer process simulation. Numerous experiments, involving fabrication of single claddings, were also carried out with varying process parameters. Comparisons of the process simulations and experimental results showed good agreement in terms of overall trends.

Details

Rapid Prototyping Journal, vol. 4 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 1000