Search results

1 – 10 of 28
Open Access
Article
Publication date: 27 June 2023

Farid Salari, Paolo Bosetti and Vincenzo M. Sglavo

Particles bed binding by selective cement activation (SCA) method is a computer-aided manufacturing (CAM) technique used to produce cementitious elements. A computer-aided design…

Abstract

Purpose

Particles bed binding by selective cement activation (SCA) method is a computer-aided manufacturing (CAM) technique used to produce cementitious elements. A computer-aided design file is sliced to generate G-codes before printing. This paper aims to study the effect of key input parameters for slicer software on the final properties of printed products.

Design/methodology/approach

The one factor at a time (OFAT) methodology is used to investigate the impact of selected parameters on the final properties of printed specimens, and the causes for the variations in outcomes of each variable are discussed.

Findings

Finer aggregates can generate a more compact layer, resulting in a denser product with higher strength. Fluid pressure is directly determined by voxel rate (rV); however, high pressures enable better fluid penetration control for fortified products; for extreme rVs, residual voids in the interfaces between successive layers and single-line primitives impair mechanical strength. It was understood that printhead movement along the orientation of the parts in the powder bed improved the mechanical properties.

Originality/value

The design of experiment (DOE) method assesses the influence of process parameters on various input printing variables at the same time. As the resources are limited, a fractional factorial plan is carried out on a subset of a full factorial design; hence, providing physical interpretation behind changes in each factor is difficult. OFAT aids in analyzing the effect of a change in one factor on output while all other parameters are kept constant. The results assist engineers in properly considering the influence of variable variations for future DOE designs.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 2 January 2023

Sara Candidori, Serena Graziosi, Paola Russo, Kasra Osouli, Francesco De Gaetano, Alberto Antonio Zanini and Maria Laura Costantino

The purpose of this study is to describe the design and validation of a three-dimensional (3D)-printed phantom of a uterus to support the development of uterine balloon tamponade…

2278

Abstract

Purpose

The purpose of this study is to describe the design and validation of a three-dimensional (3D)-printed phantom of a uterus to support the development of uterine balloon tamponade devices conceived to stop post-partum haemorrhages (PPHs).

Design/methodology/approach

The phantom 3D model is generated by analysing the main requirements for validating uterine balloon tamponade devices. A modular approach is implemented to guarantee that the phantom allows testing these devices under multiple working conditions. Once finalised the design, the phantom effectiveness is validated experimentally.

Findings

The modular phantom allows performing the required measurements for testing the performance of devices designed to stop PPH.

Social implications

PPH is the leading obstetric cause of maternal death worldwide, mainly in low- and middle-income countries. The proposed phantom could speed up and optimise the design and validation of devices for PPH treatment, reducing the maternal mortality ratio.

Originality/value

To the best of the authors’ knowledge, the 3D-printed phantom represents the first example of a modular, flexible and transparent uterus model. It can be used to validate and perform usability tests of medical devices.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 16 August 2023

Florian Ausserer, Igor Velkavrh, Fevzi Kafexhiu and Carsten Gachot

This study aims to focus on the development of an experimental setup for testing tribological pairings under a gas atmosphere at pressures up to 10 bar.

Abstract

Purpose

This study aims to focus on the development of an experimental setup for testing tribological pairings under a gas atmosphere at pressures up to 10 bar.

Design/methodology/approach

A pressure chamber allowing oscillating movement through an outer shaft was constructed and mounted on an oscillating tribometer. Due to a metal spring bellows system, a methodology for the evaluation of the coefficient of friction values separately from the spring forces was developed.

Findings

The selected material concept was qualitatively and quantitatively assessed. An evaluation of the static and the dynamic coefficient of friction was performed, which was crucial for the understanding of the adhesion effects of the tested material pairing. The amount of information that is lost due to averaging the measured friction values is higher than one would expect.

Originality/value

The developed experimental setup is unique and, compared with the existing tribometers for testing under gas ambient pressures, allows testing under contact conditions that are closer to real applications, such as compressors and expanders. An in-depth observation of the adhesion and stick–slip effects of the tested material pairings is possible as well.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-06-2023-0173/

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 13 June 2022

Julie Krogh Agergaard, Kristoffer Vandrup Sigsgaard, Niels Henrik Mortensen, Jingrui Ge and Kasper Barslund Hansen

The purpose of this paper is to investigate the impact of early-stage maintenance clustering. Few researchers have previously studied early-stage maintenance clustering…

Abstract

Purpose

The purpose of this paper is to investigate the impact of early-stage maintenance clustering. Few researchers have previously studied early-stage maintenance clustering. Experience from product and service development has shown that early stages are critical to the development process, as most decisions are made during these stages. Similarly, most maintenance decisions are made during the early stages of maintenance development. Developing maintenance for clustering is expected to increase the potential of clustering.

Design/methodology/approach

A literature study and three case studies using the same data set were performed. The case studies simulate three stages of maintenance development by clustering based on the changes available at each given stage.

Findings

The study indicates an increased impact of maintenance clustering when clustering already in the first maintenance development stage. By performing clustering during the identification phase, 4.6% of the planned work hours can be saved. When clustering is done in the planning phase, 2.7% of the planned work hours can be saved. When planning is done in the scheduling phase, 2.4% of the planned work hours can be saved. The major difference in potential from the identification to the scheduling phase came from avoiding duplicate, unnecessary and erroneous work.

Originality/value

The findings from this study indicate a need for more studies on early-stage maintenance clustering, as few others have studied this.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2511

Keywords

Open Access
Article
Publication date: 13 November 2023

Ming Gao, Anhui Pan, Yi Huang, Jiaqi Wang, Yan Zhang, Xiao Xie, Huanre Han and Yinghua Jia

The type 120 emergency valve is an essential braking component of railway freight trains, but corresponding diaphragms consisting of natural rubber (NR) and chloroprene rubber…

Abstract

Purpose

The type 120 emergency valve is an essential braking component of railway freight trains, but corresponding diaphragms consisting of natural rubber (NR) and chloroprene rubber (CR) exhibit insufficient aging resistance and low-temperature resistance, respectively. In order to develop type 120 emergency valve rubber diaphragms with long-life and high-performance, low-temperatureresistant CR and NR were processed.

Design/methodology/approach

The physical properties of the low-temperature-resistant CR and NR were tested by low-temperature stretching, dynamic mechanical analysis, differential scanning calorimetry and thermogravimetric analysis. Single-valve and single-vehicle tests of type 120 emergency valves were carried out for emergency diaphragms consisting of NR and CR.

Findings

The low-temperature-resistant CR and NR exhibited excellent physical properties. The elasticity and low-temperature resistance of NR were superior to those of CR, whereas the mechanical properties of the two rubbers were similar in the temperature range of 0 °C–150 °C. The NR and CR emergency diaphragms met the requirements of the single-valve test. In the low-temperature single-vehicle test, only the low-temperature sensitivity test of the NR emergency diaphragm met the requirements.

Originality/value

The innovation of this study is that it provides valuable data and experience for future development of type 120 valve rubber diaphragms.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 22 September 2023

Nengsheng Bao, Yuchen Fan, Chaoping Li and Alessandro Simeone

Lubricating oil leakage is a common issue in thermal power plant operation sites, requiring prompt equipment maintenance. The real-time detection of leakage occurrences could…

Abstract

Purpose

Lubricating oil leakage is a common issue in thermal power plant operation sites, requiring prompt equipment maintenance. The real-time detection of leakage occurrences could avoid disruptive consequences caused by the lack of timely maintenance. Currently, inspection operations are mostly carried out manually, resulting in time-consuming processes prone to health and safety hazards. To overcome such issues, this paper proposes a machine vision-based inspection system aimed at automating the oil leakage detection for improving the maintenance procedures.

Design/methodology/approach

The approach aims at developing a novel modular-structured automatic inspection system. The image acquisition module collects digital images along a predefined inspection path using a dual-light (i.e. ultraviolet and blue light) illumination system, deploying the fluorescence of the lubricating oil while suppressing unwanted background noise. The image processing module is designed to detect the oil leakage within the digital images minimizing detection errors. A case study is reported to validate the industrial suitability of the proposed inspection system.

Findings

On-site experimental results demonstrate the capabilities to complete the automatic inspection procedures of the tested industrial equipment by achieving an oil leakage detection accuracy up to 99.13%.

Practical implications

The proposed inspection system can be adopted in industrial context to detect lubricant leakage ensuring the equipment and the operators safety.

Originality/value

The proposed inspection system adopts a computer vision approach, which deploys the combination of two separate sources of light, to boost the detection capabilities, enabling the application for a variety of particularly hard-to-inspect industrial contexts.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2511

Keywords

Open Access
Article
Publication date: 31 August 2023

Jingjing Shi, Ning Qian, Honghua Su, Ying Yang and Yiping Wang

The electrical properties of piezoelectric vibrators have a crucial influence on the operating state of ultrasonic motors. In order to solve the problem that the current…

Abstract

Purpose

The electrical properties of piezoelectric vibrators have a crucial influence on the operating state of ultrasonic motors. In order to solve the problem that the current piezoelectric vibrator generates a large amount of heat during vibration to degrade its performance, which in turn affects the normal operation of ultrasonic motors, this paper prepares a novel piezoelectric vibrator and tests its maximum vibration velocity under the working condition, which is more than twice as much as that of the current commercial PZT-8.

Design/methodology/approach

The crystal structures of the samples were analyzed by using an X-ray diffractometer. For microstructure observation, samples were observed by scanning electron microscope (SEM). The quasi-static piezoelectric coefficient meter (ZJ-3AN) was used for piezoelectric measurement. Dielectric properties were measured by utilizing an impedance analyzer (Agilent 4294A) with a laboratory heating unit. Ferroelectric hysteresis loops were obtained using a ferroelectric analyzer (Radiant, Multiferroic 100). A Doppler laser vibrometer (Polytec PSV-300F, Germany) and a power amplifier were used for piezoelectric vibration measurements, during which the temperature rise was determined by an infrared radiation thermometer (Victor 303, China).

Findings

The ceramics exhibit enhanced piezoelectric performance at 0.1–0.4 mol% of Yb doping contents. The ceramic of 0.4 mol% Yb reaches the maximal internal bias field and presents a larger mechanical quality factor of 1,692 compared with that of 0.2 mol% Yb-doped ceramic, in spite of a slightly decreased dielectric constant of 439 pC/N, the unit of the piezoelectric constant, which is the ratio of the local charge (pC) to the frontal force (N) and electromechanical coupling coefficient of 0.63. The vibrator with this large mechanical quality factor ceramic displays a vibration velocity of up to 0.81 m/s under the constraint of 20 °C temperature rising, which is much higher than commercial high-power piezoelectric ceramics PZT-8.

Originality/value

The enhanced high-power properties of the piezoelectric vibrator by Yb doping may provide a potential application for the high-performance USM and offer the possibility of long-term stable operation under high power for special equipment like USM. In the subsequent phase of research, the novel PZT-based high-power piezoelectric vibrator can be utilized in the USM, and the motor's performance will be evaluated under aerospace conditions to objectively assess the reliability of the piezoelectric vibrator.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 3
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 25 December 2023

Anna Trubetskaya, Alan Ryan, Daryl John Powell and Connor Moore

Output from the Irish Dairy Industry has grown rapidly since the abolition of quotas in 2015, with processors investing heavily in capacity expansion to deal with the extra milk…

Abstract

Purpose

Output from the Irish Dairy Industry has grown rapidly since the abolition of quotas in 2015, with processors investing heavily in capacity expansion to deal with the extra milk volumes. Further capacity gains may be achieved by extending the processing season into the winter, a key enabler for which being the reduction of duration of the winter maintenance overhaul period. This paper aims to investigate if Lean Six Sigma tools and techniques can be used to enhance operational maintenance performance, thereby releasing additional processing capacity.

Design/methodology/approach

Combining the Six-Sigma Define, Measure, Analyse, Improve, Control (DMAIC) methodology and the structured approach of Turnaround Maintenance (TAM) widely used in process industries creates a novel hybrid model that promises substantial improvement in maintenance overhaul execution. This paper presents a case study applying the DMAIC/TAM model to Ireland’s largest dairy processing site to optimise the annual maintenance shutdown. The objective was to deliver a 30% reduction in the duration of the overhaul, enabling an extension of the processing season.

Findings

Application of the DMAIC/TAM hybrid resulted in process enhancements, employee engagement and a clear roadmap for the operations team. Project goals were delivered, and original objectives exceeded, resulting in €8.9m additional value to the business and a reduction of 36% in the duration of the overhaul.

Practical implications

The results demonstrate that the model provides a structure that promotes systematic working and a continuous improvement focus that can have substantial benefits for wider industry. Opportunities for further model refinement were identified and will enhance performance in subsequent overhauls.

Originality/value

To the best of the authors’ knowledge, this is the first time that the structure and tools of DMAIC and TAM have been combined into a hybrid methodology and applied in an Irish industrial setting.

Details

International Journal of Lean Six Sigma, vol. 15 no. 8
Type: Research Article
ISSN: 2040-4166

Keywords

Open Access
Article
Publication date: 30 May 2023

Tommaso Stomaci, Francesco Buonamici, Giacomo Gelati, Francesco Meucci and Monica Carfagni

Left atrial appendage occlusion (LAAO) is a structural interventional cardiology procedure that offers several possibilities for the application of additive manufacturing…

Abstract

Purpose

Left atrial appendage occlusion (LAAO) is a structural interventional cardiology procedure that offers several possibilities for the application of additive manufacturing technologies. The literature shows a growing interest in the use of 3D-printed models for LAAO procedure planning and occlusion device choice. This study aims to describe a full workflow to create a 3D-printed LAA model for LAAO procedure planning.

Design/methodology/approach

The workflow starts with the patient’s computed tomography diagnostic image selection. Segmentation in a commercial software provides initial geometrical models in standard tessellation language (STL) format that are then preprocessed for print in dedicated software. Models are printed using a commercial stereolithography machine and postprocessing is performed.

Findings

Models produced with the described workflow have been used at the Careggi Hospital of Florence as LAAO auxiliary planning tool in 10 cases of interest, demonstrating a good correlation with state-of-the-art software for device selection and improving the surgeon’s understanding of patient anatomy and device positioning.

Originality/value

3D-printed models for the LAAO planning are already described in the literature. The novelty of the article lies in the detailed description of a robust workflow for the creation of these models. The robustness of the method is demonstrated by the coherent results obtained for the 10 different cases studied.

Open Access
Article
Publication date: 2 May 2023

Miroslav Šplíchal, Miroslav Červenka and Jaroslav Juracka

This study aims to focus on verifying the possibility of monitoring the condition of a turboprop engine using data recorded by on-board avionics Garmin G1000. This approach has…

Abstract

Purpose

This study aims to focus on verifying the possibility of monitoring the condition of a turboprop engine using data recorded by on-board avionics Garmin G1000. This approach has potential benefits for operators without the need to invest in specialised equipment. The main focus was on the inter-turbine temperature (ITT). An unexpected increase in temperature above the usual value may indicate an issue with the engine. The problem lies in the detection of small deviations when the absolute value of the ITT is affected by several external variables.

Design/methodology/approach

The ITT is monitored by engine sensors and stored by avionics 1× per second onto an SD card. This process generates large amount of data that needs to be processed. Therefore, an algorithm was created to detect the steady states of the engine parameters. The ITT value also depends on the flight parameters and surrounding environment. As a solution to these effects, the division of data into clusters that represent the usual flight profiles was tested. This ensures a comparison at comparable ambient pressures. The dominant environmental influence then remain at the ambient air temperature (OAT). Three OAT compensation methods were tested in this study. Compensation for the standard atmosphere, compensation for the standard temperature of the given flight level and compensation for the speed of the generator, where the regression analysis proved the dependence between the ambient temperature and the speed of the generator.

Findings

The influence of ambient temperature on the corrected ITT values is noticeable. The best method for correcting the OAT appears to be the use of compensation through the revolutions of the compressor turbine NG. The speed of the generator depends on several parameters, and can refine the corrected ITT value. During the long-term follow-up, the ITT differences (delta values) were within the expected range. The tested data did not include the behaviour of the engine with a malfunction or other damage that would clearly verify this approach. Therefore, the engine monitoring will continue.

Practical implications

This study presents a possible approach to turbine engine condition monitoring using limited on board avionic data. These findings can support the development of an engine condition monitoring system with automatic abnormality detection and low operating costs.

Originality/value

This article represent a practical description of problems in monitoring the condition of a turboprop engine in an aircraft with variable flight profiles. The authors are not aware of a similar method that uses monitoring of engine parameters at defined flight levels. Described findings should limit the influence of ambient air pressure on engine parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Access

Only Open Access

Year

Last 12 months (28)

Content type

Article (28)
1 – 10 of 28