Search results

1 – 10 of 35
Article
Publication date: 6 July 2015

Amira Marzouki, Mahmoud Hamouda and Farhat Fnaiech

The purpose of this paper is to propose a new hybrid control method of pulse width modulation (PWM) active rectifiers tied to the grid through an LCL filter. The control method is…

Abstract

Purpose

The purpose of this paper is to propose a new hybrid control method of pulse width modulation (PWM) active rectifiers tied to the grid through an LCL filter. The control method is designed with the aim to achieve a perfect regulation of the dc-bus voltage; a near unity input power factor (UIPF) operation as well as a high quality of the line currents.

Design/methodology/approach

The proposed hybrid control method consists of a PI-based linear controller cascaded with a nonlinear one. The nonlinear controller (inner loop) is designed using the input-output feedback linearization (IOFL) theory. It should control both the dc-bus voltage and the input currents at the converter’s poles. The linear controller (outer loop) is devoted to control the reactive line current so as to achieve a near UIPF.

Findings

A perfect regulation of the dc-bus voltage and a near UIPF operation are achieved. Moreover, a high quality of the line currents is obtained. The robustness and effectiveness of the proposed control method have been successfully tested under variation of the dc voltage reference as well as grid and load disturbances.

Practical implications

The proposed method is useful for single-stage and two-stage grid connected photovoltaic systems, wind energy conversion, and distributed power generation systems.

Originality/value

The main novelty of this paper is the combination of linear and nonlinear controllers with the aim to control a PWM active rectifier tied to the grid through a third-order LCL filter. In the opinion, such control method has not been applied to this converter in earlier research papers. The numerical simulations carried out under normal and abnormal conditions confirm the effectiveness of the proposed approach.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 20 June 2020

Fossy Mary Chacko, Ginu Ann George, Jayan M.V. and Prince A.

This paper aims to propose an improved multifunctional control strategy for achieving real, reactive power flow control and the mitigation of power quality issues in grid…

Abstract

Purpose

This paper aims to propose an improved multifunctional control strategy for achieving real, reactive power flow control and the mitigation of power quality issues in grid integrated photovoltaic (GIPV) systems.

Design/methodology/approach

The paper proposes a dual stage, three phase, multifunctional GIPV system with modified instantaneous reactive power (IRP) theory-based and modified synchronous reference frame (SRF) theory-based control algorithms for reference template generation with continuous load power requirement tracking. The control structure is designed so as to impart virtual distribution static compensator functionality to the photovoltaic inverter. The dual mode operation in active filter and renewable power injection modes provides enhanced capability to the GIPV system. A comprehensive evaluation of the dynamic behaviour of the GIPV system is carried out for various conditions of irradiance and load under MATLAB/Simulink platform. The performance comparison is done considering an uncompensated system and the GIPV system with both proposed control algorithms.

Findings

The extensive simulation results demonstrate that the proposed modified SRF theory-based multifunctional control strategy shows superior performance in real and reactive power flow control; reduction in real and reactive burden of the utility grid; and regulation of dc bus voltage under varying scenarios of irradiance and load. Furthermore, there is improvement of grid power factor and reduction in total harmonic distortion of grid currents in compliance with the IEEE 519 standard even with highly non-linear loads at the point of common coupling.

Originality/value

The proposed modified SRF theory-based multifunctional controller offers a viable solution for power quality enhancement as well as the realization of effective real and reactive power flow control in GIPV systems. Thus, the penetration level of distributed generation can be increased in this era of global energy crisis.

Details

World Journal of Engineering, vol. 17 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 April 2022

Kabra Preeti and Donepudi Sudha Rani

The earlier methods are more resilient to improvements such as load shift and path change. This results in problems such as a voltage drop and a high reactive flux. In addition…

Abstract

Purpose

The earlier methods are more resilient to improvements such as load shift and path change. This results in problems such as a voltage drop and a high reactive flux. In addition, due to the delay, congestion or interruption of the transmission, the system cannot receive all phasor measurement unit (PMU) measurements at the relevant time as well as the presence of noise in the received data.

Design/methodology/approach

With the development of wide area measurement system technologies, it seems to be possible to track voltage stability online via time-stamped PMUs. As the voltage instability causes a voltage decomposition, voltage instability is one of the most important problems when monitoring the power supply.

Findings

This harmonic distortion significantly decreases the data quality in the grid. As a result, instability ascertainment based on PMU has been suggested as a method for detecting voltage instability in power systems monitored with PMU. In addition, a technique called instability amendment via load dropping has been proposed to keep the device from collapsing due to voltage failure.

Originality/value

To improve the power output, the power prominence melioration technique was developed. This proposed system has been implemented in MATLAB Simulink and compared with the recent researches.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 August 2021

Lenin Kanagasabai

Purpose of this paper are Real power loss reduction, voltage stability enhancement and minimization of Voltage deviation.

Abstract

Purpose

Purpose of this paper are Real power loss reduction, voltage stability enhancement and minimization of Voltage deviation.

Design/methodology/approach

In HLG approach as per Henry gas law sum of gas dissolved in the liquid is directly proportional to the partial pressure on above the liquid. Gas dissolving in the liquid which based on Henry gas law is main concept to formulate the proposed algorithm. Populations are divided into groups and all the groups possess the similar Henry constant value. Exploration and exploitation has been balanced effectively. Ranking and position of the worst agents is done in order to avoid the local optima. Then in this work Mobula alfredi optimization (MAO) algorithm is projected to solve optimal reactive power problem. Foraging actions of Mobula alfredi has been imitated to design the algorithm. String foraging, twister foraging and backward roll foraging are mathematically formulated to solve the problem. In the entire exploration space the Mobula alfredi has been forced to discover new regions by assigning capricious position. Through this approach, exploration competence of the algorithm has been improved. In all iterations, the position of the Mobula alfredi has been updated and replaced with the most excellent solution found so far. Exploration and exploitation capabilities have been maintained sequentially. Then in this work balanced condition algorithm (BCA) is projected to solve optimal reactive power problem. Proposed BCA approach based on the conception in physics- on the subject of the mass; incoming, exit and producing in the control volume. Preliminary population has been created based on the dimensions and number of particles and it initialized capriciously in the exploration space with minimum and maximum concentration. Production control parameter and Production probability utilized to control the exploration and exploitation.

Findings

Proposed Henry's Law based -soluble gas optimization (HLG) algorithm, Mobula alfredi optimization (MAO) algorithm and BCA are evaluated in IEEE 30 bus system with L-index (Voltage stability) and also tested in standard IEEE 14, 30, 57, 118, 300 bus test systems without L- index. Real power loss minimization, voltage deviation minimization, and voltage stability index enhancement has been attained.

Originality/value

For the first time Henry's Law based -soluble gas optimization (HLG) algorithm, Mobula alfredi optimization (MAO) algorithm and BCA is projected to solve the power loss reduction problem.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 August 2020

Ramanjaneyulu Alla and Anandita Chowdhury

A new control method is proposed for grid integration of improved hybrid three quasi z source converter (IHTQZSC). The proposed controller provides a constant switching frequency…

Abstract

Purpose

A new control method is proposed for grid integration of improved hybrid three quasi z source converter (IHTQZSC). The proposed controller provides a constant switching frequency with an improved dynamic response with fewer computations. The proposed constant switching frequency predictive controller (CSF-PC) does not need weighting factors and reduces the complexity of the control circuit.

Design/methodology/approach

A single PI controller is intended to control voltage across dc-link by generating the necessary shoot-through duty ratio. The predictive controller produces the modulating signals required to inject the desired grid current. The performance of the proposed controller is validated with MATLAB/Simulink software.

Findings

The discrete-time instantaneous model on the grid side in the proposed controller influences the inductor current with minimum ripples. Dynamic response and computational complexity of the converter with the PI controller, finite set model predictive controller (FS-MPC) and the proposed controller are discussed.

Practical implications

The converter belongs to impedance source converters (ISC) family, delivers higher voltage gain in a single-stage power conversion process, extract the energy from the intermittent nature of renewable energy conversion systems. Implementing CSF-PC for ISC is simple, as it has a single PI controller.

Originality/value

Grid integration of high voltage gain IHTQZSC is accomplished with PI, FS-MPC and CSF-PC. Though the FS-MPC exhibits superior dynamic response under input voltage disturbance and grid current variation, total harmonic distortion (THD) in the grid current is high. CSF-PC provides better THD with a good dynamic response with reduced inductor current ripples.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 31 January 2020

Subhendu Bikash Santra and Subodh Kumar Mohanty

The purpose of this study is to present a new methodology of selective harmonics elimination (SHE) technique suitable for single-phase photovoltaic (PV) tied pulse width modulated…

Abstract

Purpose

The purpose of this study is to present a new methodology of selective harmonics elimination (SHE) technique suitable for single-phase photovoltaic (PV) tied pulse width modulated (PWM) inverter.

Design/methodology/approach

In the proposed SHE, switching angles for inverter control are determined offline through numerical techniques and stored in a microcontroller memory as a function of modulation index (md). The methodology uses the solution that leads to a lower change of switching angles from the previous modulation index (md) for storing in the processor memory for multiple solutions. This leads to a smaller number of sections when a piecewise mixed model is considered for storing the entire switching angle curve for the online inverter control. The proposed idea is simulated and experimentally validated on a laboratory prototype of PV (500 W) grid-tied PWM inverter. The control environment is then realized in NI c-RIO 9082.

Findings

This proposed technique is suitable for limiting voltage total harmonics distortion (THD) in single-phase PV tied grid connected voltage source inverter (VSI). Moreover, it is found that filter (L-C) size requirement is less.

Originality/value

The proposed SHE with piecewise mixed model technique effectively reduces voltage THD with less filter size (L-C) in a single-phase PV-tied system.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 18 November 2019

Dominik Andrzej Górski

The power electronic converter is used for the satisfaction of reactive power demand of induction generator, when grid-tied. This paper aims to present an application of STATCOM…

Abstract

Purpose

The power electronic converter is used for the satisfaction of reactive power demand of induction generator, when grid-tied. This paper aims to present an application of STATCOM to reduce inrush transient caused by the connection of a squirrel-cage induction generator (SCIG) to the grid.

Design/methodology/approach

The power generation system consists of an uncontrolled prime mover, a SCIG and a power electronic converter connected to the grid. The three-phase Neutral Point Clamped (NPC) converter works as a STATCOM to satisfy a reactive power demand of the generator. A control scheme of STATCOM uses the x-y reference frame rotating synchronously with grid voltage vector and the p-q instantaneous power theory to calculate q component of grid power.

Findings

It is shown that the parallel converter, which works as a reactive power compensator allows decreasing transients during a grid connection of the induction generator.

Research limitations/implications

Transients during a grid connection of the induction generator are only partially decreased.

Practical implications

It is needed to compensate for the reactive power of a SCIG. The NPC converter works as a STATCOM. The converter partially reduces grid transients during generator connection. The laboratory tests are demonstrated by connection 7.5 kW induction generator to 8 kVA transformer.

Originality/value

The paper presents the mitigation of grid transients during connection of induction generator with the power electronic converter working as reactive power compensator.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 February 2021

Houda Laabidi, Houda Jouini and Abdelkader Mami

The purpose of this paper is to propose an efficient current control technique based on model predictive control (MPC) for grid-connected wind conversion system. This nonlinear…

68

Abstract

Purpose

The purpose of this paper is to propose an efficient current control technique based on model predictive control (MPC) for grid-connected wind conversion system. This nonlinear strategy is applied for the chopper circuit and grid-tied inverter and compared with other two conventional schemes; a traditional proportional-integral (PI) and sliding mode controller (SMC) using the same switching frequency.

Design/methodology/approach

Firstly, the MPC scheme uses the mathematical model to predict future behaviors of the controlled converter outputs for possible switching states. After that, the optimal voltage vector is selected by minimizing a cost function, which is defined as a sum of the absolute values of the controlled current errors. Then, the corresponding switching signals are applied to the converter switches in the next sampling period to track correctly the reference current. Thus, the MPC scheme ensures a minimal error between the predicted and reference trajectories of the considered variables.

Findings

The MPC-based algorithm presents several benefits in terms of high accuracy control, reduced DC-link voltage ripples during steady-state operation, faster transient response, lower overshoots and disturbance rejection and acceptable total harmonic distortion.

Originality/value

The authors introduce several simulation case studies, using PSIM software package, which prove the reliability and effectiveness of the proposed MPC scheme. Therefore, the MPC performances, during dynamic and steady-state condition, are compared with those obtained by a PI regulator and SMC to highlight the improvements, specifically the transfer of smooth power to the grid.

Article
Publication date: 2 November 2015

Diego Iannuzzi, Mario Pagano, Luigi Piegari and Pietro Tricoli

The purpose of this paper is to propose a new converter topology for integrating PV plants constituted by many panels into the grid. The converter is capable of implementing MPPT…

Abstract

Purpose

The purpose of this paper is to propose a new converter topology for integrating PV plants constituted by many panels into the grid. The converter is capable of implementing MPPT algorithms on different subset of modules and can balance the different energy supplied by panels differently irradiated. The output voltage presents a very low ripple also if small filters are used for grid connection.

Design/methodology/approach

In the paper, at first the converter configuration is presented. Then a control strategy for obtaining, at the same time the distributed MPPT and the power balancing on the three phases is proposed. Finally, by means of numerical simulations, the good performances of the proposed converter are shown.

Findings

The proposed converter, lent from MMC configurations, is deeply studied and a suitable control strategy is well analyzed in the paper. Analytical model for voltage and current balancing are given.

Research limitations/implications

The analysis presented in the paper complete some studies started in the last years and partially presented in previous scientific papers. It reaches a final point and gives all the specific for the realization of the converter and of its control.

Practical implications

The paper gives all the instrument to design and realize a PV power plant integrated into building façade.

Originality/value

The converter and the control for voltage and current balancing presented in this paper represent a significant original contribution of this work.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 June 2022

Vasantharaj Subramanian and Indragandhi Vairavasundaram

The purpose of this study is to eliminate voltage harmonics and instantly measure the positive sequence fundamental voltage during unbalanced grid conditions, the dual…

Abstract

Purpose

The purpose of this study is to eliminate voltage harmonics and instantly measure the positive sequence fundamental voltage during unbalanced grid conditions, the dual second-order generalized integrator-phase locked loop used in series hybrid filter structures is often used in grid synchronisation in three-phase networks. The preferred series active hybrid power filter simultaneously compensates for voltage balancing and current harmonics generated by non-linear loads.

Design/methodology/approach

This paper examines the use of renewable energy–based microgrid (MG) to support linear and non-linear loads. It is capable of synchronising with both the utility and the diesel generator unit. Power is transferred from the grid throughout a stable grid situation with minimum renewable energy generation and maximum load demand. It synchronises with diesel generator set to supply the load and form an AC MG during outages and minimum renewable power generation. In islanded and grid-connected mode, the voltage and power quality issues of the MG are controlled by static synchronous compensator and series hybrid filter.

Findings

Because of the presence of non-linear loads, reactive loads in the distribution system and the injection of wind power into the grid integrated system result power quality issues like current harmonics, voltage fluctuations, reactive power demand, etc.

Originality/value

The voltage at the load (linear and non-linear) is regulated, and the power factor and total harmonic distortions were improved with the help of the series hybrid filter.

1 – 10 of 35