Search results

1 – 10 of over 24000
Article
Publication date: 30 March 2022

Karthick R., Ramakrishnan C. and Sridhar S.

This paper aims to introduce the quasi impedance source inverter (qZSI)-based static compensator (STATCOM), which is incorporated into the hybrid distributed power generation

Abstract

Purpose

This paper aims to introduce the quasi impedance source inverter (qZSI)-based static compensator (STATCOM), which is incorporated into the hybrid distributed power generation system for enhancement of power quality. The distributed power generation system includes the photovoltaic (PV), wind energy conversion system (WECS) and battery energy storage system.

Design/methodology/approach

The WECS is used by the self-excited induction generator (SEIG) and the flywheel energy storage system (FESS). To regulate its terminal voltage and frequency, the SEIG requires adjustable volt-ampere reactive (VAR). A combination of a STATCOM and a fixed condenser bank usually serves to satisfy the VAR demand. The maximum correntropy criterion-based adaptive filter technique (AFT) is proposed to control the qZSI-STATCOM and to guarantee that the voltage at the SEIG terminal is harmonic-free while providing non-linear three-phase and single-phase loads.

Findings

The coordinated operation of the suggested voltage control and flywheel control systems ensures that load voltage and frequency are retained in their respective values at very low harmonic distortions regardless of wind speed and load variation. The simulation and experimental studies are carried out under different load conditions to validate the efficiencies of the PV-assisted STATCOM.

Originality/value

To improve system stability and minimize total costs, extra load current sensors can also be avoided. This paper proposes to control the SEIG terminal voltage and harmonic elimination in the standalone WECS systems using maximum correntropy criterion-based AFT with a fuzzy logic controller.

Article
Publication date: 1 April 2019

Arulraj Rajendran and Kumarappan Narayanan

This paper aims to optimally plan distributed generation (DG) and capacitor in distribution network by optimizing multiple conflicting operational objectives simultaneously so as…

Abstract

Purpose

This paper aims to optimally plan distributed generation (DG) and capacitor in distribution network by optimizing multiple conflicting operational objectives simultaneously so as to achieve enhanced operation of distribution system. The multi-objective optimization problem comprises three important objective functions such as minimization of total active power loss (Plosstotal), reduction of voltage deviation and balancing of current through feeder sections.

Design/methodology/approach

In this study, a hybrid configuration of weight improved particle swarm optimization (WIPSO) and gravitational search algorithm (GSA) called hybrid WIPSO-GSA algorithm is proposed in multi-objective problem domain. To solve multi-objective optimization problem, the proposed hybrid WIPSO-GSA algorithm is integrated with two components. The first component is fixed-sized archive that is responsible for storing a set of non-dominated pareto optimal solutions and the second component is a leader selection strategy that helps to update and identify the best compromised solution from the archive.

Findings

The proposed methodology is tested on standard 33-bus and Indian 85-bus distribution systems. The results attained using proposed multi-objective hybrid WIPSO-GSA algorithm provides potential technical and economic benefits and its best compromised solution outperforms other commonly used multi-objective techniques, thereby making it highly suitable for solving multi-objective problems.

Originality/value

A novel multi-objective hybrid WIPSO-GSA algorithm is proposed for optimal DG and capacitor planning in radial distribution network. The results demonstrate the usefulness of the proposed technique in improved distribution system planning and operation and also in achieving better optimized results than other existing multi-objective optimization techniques.

Details

International Journal of Energy Sector Management, vol. 13 no. 1
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 20 June 2020

Fossy Mary Chacko, Ginu Ann George, Jayan M.V. and Prince A.

This paper aims to propose an improved multifunctional control strategy for achieving real, reactive power flow control and the mitigation of power quality issues in grid…

Abstract

Purpose

This paper aims to propose an improved multifunctional control strategy for achieving real, reactive power flow control and the mitigation of power quality issues in grid integrated photovoltaic (GIPV) systems.

Design/methodology/approach

The paper proposes a dual stage, three phase, multifunctional GIPV system with modified instantaneous reactive power (IRP) theory-based and modified synchronous reference frame (SRF) theory-based control algorithms for reference template generation with continuous load power requirement tracking. The control structure is designed so as to impart virtual distribution static compensator functionality to the photovoltaic inverter. The dual mode operation in active filter and renewable power injection modes provides enhanced capability to the GIPV system. A comprehensive evaluation of the dynamic behaviour of the GIPV system is carried out for various conditions of irradiance and load under MATLAB/Simulink platform. The performance comparison is done considering an uncompensated system and the GIPV system with both proposed control algorithms.

Findings

The extensive simulation results demonstrate that the proposed modified SRF theory-based multifunctional control strategy shows superior performance in real and reactive power flow control; reduction in real and reactive burden of the utility grid; and regulation of dc bus voltage under varying scenarios of irradiance and load. Furthermore, there is improvement of grid power factor and reduction in total harmonic distortion of grid currents in compliance with the IEEE 519 standard even with highly non-linear loads at the point of common coupling.

Originality/value

The proposed modified SRF theory-based multifunctional controller offers a viable solution for power quality enhancement as well as the realization of effective real and reactive power flow control in GIPV systems. Thus, the penetration level of distributed generation can be increased in this era of global energy crisis.

Details

World Journal of Engineering, vol. 17 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 May 2015

Dariusz Zieliński, Piotr Lipnicki and Wojciech Jarzyna

In the dispersed generation system, power electronic converters allow for coupling between energy sources and the power grid. The requirements of Transmission System Operators are…

Abstract

Purpose

In the dispersed generation system, power electronic converters allow for coupling between energy sources and the power grid. The requirements of Transmission System Operators are difficult to meet when the share of distributed energy sources of the total energy balance increases. These requirements allow to increase penetration of distributed generation sources without compromising power system stability and reliability. Therefore, in addition to control of active or reactive power, as well as voltage and frequency stabilization, the modern power electronic converters should support power grid in dynamic states or in the presence of nonlinear distortions. The paper aims to discuss these issues.

Design/methodology/approach

The research methodology used in this paper is based on three steps: Mathematical modelling and simulation studies, Experiments on laboratory test stand, Analyzing obtained results, evaluating them and formulating the conclusions.

Findings

The authors identified two algorithms, αβ-Filter and Voltage Controlled Oscillator, which are able to successfully cope with notch distortions. Other algorithms, used previously for voltage dips, operate improperly when the voltage grid has notching disturbances. This work evaluates six different synchronization algorithms with respect to the abilities to deal with notching.

Research limitations/implications

The paper presents results of the synchronization algorithms in the presence of nonlinear notching interference. These studies were performed using the original hardware-software power grid emulator, real-time d’Space platform and power electronic converter. This methodology allowed us to exactly and accurately evaluate synchronization performance methods in the presence of complex nonlinear phenomena in power grid and power electronic converter. The results demonstrated that the best algorithms were αβ – Filtering and Voltage Controlled Oscilator.

Originality/value

In this paper, different synchronization algorithms have been tested. These included the classical Phase Locked Loop with Synchronous Reference Frame as well as modified algorithms developed by the authors, which displayed high robustness with respect to the notching interference. During the tests, the previously developed original test rig was used, allowing software-hardware emulation of grid phenomena.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 June 2011

Yajvender Pal Verma and Ashwani Kumar

With the inclusion of significant wind power into the power system, the unit commitment (UC) has become challenging due to frequent variations in wind power, load and requirement…

Abstract

Purpose

With the inclusion of significant wind power into the power system, the unit commitment (UC) has become challenging due to frequent variations in wind power, load and requirement of reserves with sufficient ramp rate. The pumped storage units with lesser startup time and cost can take care of these sudden variations and reduce their impact on power system operation. The aim of this paper is to provide a solution model for UC problem in a hybrid power system.

Design/methodology/approach

The model developed has been implemented through GAMS optimization tool with CONOPT solver. The model has been called into MATLAB platform by using GAMS‐MATLAB interfacing to obtain solutions.

Findings

The model provides an efficient operating schedule for conventional units and pumped storage units to minimize operating cost and emission. The effects of wind power and load profiles on emission, operating cost and reserve with enough ramping capabilities have been minimized with the use of pumped storage unit. The commitment schedule of thermal and pumped storage units have been obtained with significant wind power integrated into the system for best cost commitment (BCC) and for a combined objective of cost and emission minimization.

Originality/value

This paper finds that the operating cost and emission in a commitment problem can be reduced significantly during variable wind and load conditions in a hybrid system. The model proposed provides operational schedules of conventional and pumped storage units with variable wind power and load conditions throughout operating horizon. The coordinated optimization approach has been implemented on a hybrid system with IEEE‐30 bus system.

Details

International Journal of Energy Sector Management, vol. 5 no. 2
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 6 July 2015

Amira Marzouki, Mahmoud Hamouda and Farhat Fnaiech

The purpose of this paper is to propose a new hybrid control method of pulse width modulation (PWM) active rectifiers tied to the grid through an LCL filter. The control method is…

Abstract

Purpose

The purpose of this paper is to propose a new hybrid control method of pulse width modulation (PWM) active rectifiers tied to the grid through an LCL filter. The control method is designed with the aim to achieve a perfect regulation of the dc-bus voltage; a near unity input power factor (UIPF) operation as well as a high quality of the line currents.

Design/methodology/approach

The proposed hybrid control method consists of a PI-based linear controller cascaded with a nonlinear one. The nonlinear controller (inner loop) is designed using the input-output feedback linearization (IOFL) theory. It should control both the dc-bus voltage and the input currents at the converter’s poles. The linear controller (outer loop) is devoted to control the reactive line current so as to achieve a near UIPF.

Findings

A perfect regulation of the dc-bus voltage and a near UIPF operation are achieved. Moreover, a high quality of the line currents is obtained. The robustness and effectiveness of the proposed control method have been successfully tested under variation of the dc voltage reference as well as grid and load disturbances.

Practical implications

The proposed method is useful for single-stage and two-stage grid connected photovoltaic systems, wind energy conversion, and distributed power generation systems.

Originality/value

The main novelty of this paper is the combination of linear and nonlinear controllers with the aim to control a PWM active rectifier tied to the grid through a third-order LCL filter. In the opinion, such control method has not been applied to this converter in earlier research papers. The numerical simulations carried out under normal and abnormal conditions confirm the effectiveness of the proposed approach.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 August 2021

Sushanth Bavirisetti and Mithilesh Kumar Sahu

The purpose of this paper is to analyze the performance of the gas turbine cycle integrated with solid oxide fuel cell technology. In the present work, intermediate temperature…

Abstract

Purpose

The purpose of this paper is to analyze the performance of the gas turbine cycle integrated with solid oxide fuel cell technology. In the present work, intermediate temperature solid oxide fuel cell has been considered, as it is economical, can attain an activation temperature in a quick time, and also have a longer life compared to a high-temperature solid oxide fuel cell, which helps in the commercialization and can generate two ways of electricity as a hybrid configuration.

Design/methodology/approach

The conceptualized cycle has been analyzed with the help of computer code developed in MATLAB with the help of governing equations. In this work, the focus is on the performance investigation of a Gas turbine intermediate temperature solid oxide fuel cell hybrid cycle. The work also analyzes the performance behavior of the proposed cycle with various design and operating parameters.

Findings

It is found that the power generation efficiency of the IT-SOFC-GT hybrid system reaches up to 60% (LHV) for specific design and operating conditions. The cycle calculations of an IT-SOFC-GT hybrid system and its conceptual design have been presented in this work.

Originality/value

The unique feature of this work is that IT-SOFC has been adopted for integration instead of HT-SOFC, and this work also provides the performance behavior of the hybrid system with varying design and operating parameters, which is the novelty of this work. This work has significant scientific merit, as the cost involved for the commercialization of IT-SOFC is comparatively lower than HT-SOFC and provides a good option to energy manufacturers for generating clean energy at a low cost.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 November 2019

Olubayo Moses Babatunde, Damilola Elizabeth Babatunde, Iheanacho Henry Denwigwe, Toyosi Beatrice Adedoja, Oluwaseye Samson Adedoja and Taiwo Emmanuel Okharedia

This study aims to analyze the effects of variations in annual real interest rates in the assessment of the techno-economic feasibility of a hybrid renewable energy system (HRES…

Abstract

Purpose

This study aims to analyze the effects of variations in annual real interest rates in the assessment of the techno-economic feasibility of a hybrid renewable energy system (HRES) for an off-grid community.

Design/methodology/approach

Hybrid Optimization of Multiple Energy Resources (HOMER) software is used to propose an HRES for Abadam community in northern Nigeria. The HRES was designed to meet the basic needs of the community over a 25-year project lifespan. Based on the available energy resources in the community, photovoltaic (PV), wind turbine, diesel generator and battery were suggested for integration to serve the load requirements.

Findings

When the annual real interest rates were taken as 10 and 8 per cent, the total amount of total energy fraction from PV, wind turbine and the diesel generator is 28, 57 and 15 per cent, respectively. At these interest rates, wind turbines contributed more energy across all months than other energy resources. The energy resource distribution for 0, 2,4 and 6 per cent annual real interest rates have a similar pattern, but PV contributed a majority of the energy.

Practical implications

This study has used annual real interest and inflation rates dynamic behavior to determine optimal HRES for remote communities. Hence, its analysis will equip decision-makers with the necessary information for accurate planning.

Originality/value

The results of this study can be used to plan and design HRES infrastructure for off-grid communities around the world.

Details

International Journal of Energy Sector Management, vol. 14 no. 2
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 3 January 2017

Jiazhi Lei, Qingwu Gong and Jun Ye

This paper aims to propose a simplified model of vanadium redox flow batteries (VRBs) for VRB energy storage system (ESS) design considering the operational characteristics of…

Abstract

Purpose

This paper aims to propose a simplified model of vanadium redox flow batteries (VRBs) for VRB energy storage system (ESS) design considering the operational characteristics of VRB, and a VRB ESS, considering the low terminal voltage of VRB, was presented.

Design/methodology/approach

According to the designed topology of VRB ESS and the simplified model of VRB, a small perturbation analysis method was used to establish the transfer function of VRB ESS, and the controller parameters of VRB ESS under constant charging and discharging current were designed.

Findings

Test results have demonstrated that this designed VRB ESS has fast response, small overshoot, strong adaptation and high steady precision, which strongly verified the reasonable design.

Practical implications

This simplified model of VRB can be suitably used for VRB ESS design. This designed VRB ESS realized the bidirectional power flow of VRB and AC grid. In this designed VRB ESS, phase-shifted full-bridge converter and a single-phase inverter were used and VRB was charged and discharged under constant current.

Originality/value

The paper presents a topology of VRB ESS which can realize the bidirectional power flow of VRB and AC grid. Considering the complexity of VRB model, a simplified model of VRB was proposed for the controller parameters design of VRB ESS, and this method can be used in application.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 April 2017

João Rafael Galvão, Licinio Moreira, Gonçalo Gaspar, Samuel Vindeirinho and Sérgio Leitão

Taking into account the current relevance of the concept of smart city connected with the Internet of Things, this work aims to study the implementation of this concept by…

Abstract

Purpose

Taking into account the current relevance of the concept of smart city connected with the Internet of Things, this work aims to study the implementation of this concept by applying a new energy model in an existing public building. The purpose of this paper is to enhance the sustainability and energy autonomy of the building.

Design/methodology/approach

The building referred to in the case study is a library, and simulations related to the ongoing study are based on an energy audit, comprising a survey on electrical and thermal energy consumption. The innovative proposed model consists of a mix of energy production processes based on photovoltaic panels and biomass boilers. Economic analysis of the energy model has already yielded some results regarding the payback on investment, as well as avoided emissions in the context of development of a low-carbon economy with avoided emissions and socioeconomic advantages.

Findings

It is possible to enhance the sustainability of the library studied by the retrofit of the current energy system. With the integration of photovoltaic panels and the conversion or replacement of boilers from natural gas to biomass, the GHG emissions could drop around 121 t CO2 per year. Another benefit would be the inclusion of endogenous resources over imported energy resources. The payback period for the measures proposed ranges from 2.5 to 8 years, proving that the increase in environmental sustainability is viable.

Originality/value

The intention here is to implement the concept of smart city, in more sustainable buildings, bringing them to the lowest possible energy consumption levels, hence increasing performance and comfort. Also, taking into account that the energy-consuming buildings are already constructed, it is urgent to reconvert them to lower the use of energy and emissions using technologies based on renewable energy, boosting the use of local resources.

Details

Management of Environmental Quality: An International Journal, vol. 28 no. 3
Type: Research Article
ISSN: 1477-7835

Keywords

1 – 10 of over 24000