Search results

1 – 10 of over 9000
Article
Publication date: 28 February 2024

Lise Justesen and Ursula Plesner

The purpose of this paper is to inspire a different way of thinking about digitalization and organizational change by theorizing simultaneity as an alternative to the otherwise…

Abstract

Purpose

The purpose of this paper is to inspire a different way of thinking about digitalization and organizational change by theorizing simultaneity as an alternative to the otherwise dominant root metaphor of sequence in the literature on digitalization and organizational change.

Design/methodology/approach

The theoretical argument is based on a reading of central contributions to the literature on digital technology and organizational change, and particularly inspired by the work positing a constitutive entanglement of technology and organization. We argue for an extension of this line of thinking with a reading of Latour’s notion tonalities. The relevance of the theoretical argument is demonstrated through an illustrative empirical example of the phenomenon digital-ready legislation.

Findings

The paper identifies sequence as a root metaphor in the organization and digital change literature. It develops a simultaneity view and illustrates its relevance through the example of digital-ready legislation, pinpointing how technological, organizational and legal elements are attuned to one another at the same time rather than in sequence.

Practical implications

The sequentiality view has dominated the change management research, which has travelled from research into practice. The simultaneity view has the potential to offer a new approach to planning change, with a focus on the simultaneous alignment of, e.g. legal, organizational and technological elements.

Originality/value

The paper offers an alternative to dominant views on digitalization and organizational change, drawing on an overlooked notion in Latour’s scholarship, namely tonalities. This has potential to qualify the entanglement thesis and develop simultaneity as a new metaphor for understanding digital change.

Details

Journal of Organizational Change Management, vol. 37 no. 2
Type: Research Article
ISSN: 0953-4814

Keywords

Open Access
Article
Publication date: 25 April 2024

Ilse Valenzuela Matus, Jorge Lino Alves, Joaquim Góis, Paulo Vaz-Pires and Augusto Barata da Rocha

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process…

1427

Abstract

Purpose

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process, materials, structural design features and implementation location to determine predominant parameters, environmental impacts, advantages, and limitations.

Design/methodology/approach

The review analysed 16 cases of artificial reefs from both temperate and tropical regions. These were categorised based on the AM process used, the mortar material used (crucial for biological applications), the structural design features and the location of implementation. These parameters are assessed to determine how effectively the designs meet the stipulated ecological goals, how AM technologies demonstrate their potential in comparison to conventional methods and the preference locations of these implementations.

Findings

The overview revealed that the dominant artificial reef implementation occurs in the Mediterranean and Atlantic Seas, both accounting for 24%. The remaining cases were in the Australian Sea (20%), the South Asia Sea (12%), the Persian Gulf and the Pacific Ocean, both with 8%, and the Indian Sea with 4% of all the cases studied. It was concluded that fused filament fabrication, binder jetting and material extrusion represent the main AM processes used to build artificial reefs. Cementitious materials, ceramics, polymers and geopolymer formulations were used, incorporating aggregates from mineral residues, biological wastes and pozzolan materials, to reduce environmental impacts, promote the circular economy and be more beneficial for marine ecosystems. The evaluation ranking assessed how well their design and materials align with their ecological goals, demonstrating that five cases were ranked with high effectiveness, ten projects with moderate effectiveness and one case with low effectiveness.

Originality/value

AM represents an innovative method for marine restoration and management. It offers a rapid prototyping technique for design validation and enables the creation of highly complex shapes for habitat diversification while incorporating a diverse range of materials to benefit environmental and marine species’ habitats.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 12 July 2024

Osama Habbal, Ahmad Farhat, Reem Khalil and Christopher Pannier

The purpose of this study is to assess a novel method for creating tangible three-dimensional (3D) morphologies (scaled models) of neuronal reconstructions and to evaluate its…

Abstract

Purpose

The purpose of this study is to assess a novel method for creating tangible three-dimensional (3D) morphologies (scaled models) of neuronal reconstructions and to evaluate its cost-effectiveness, accessibility and applicability through a classroom survey. The study addresses the challenge of accurately representing intricate and diverse dendritic structures of neurons in scaled models for educational purposes.

Design/methodology/approach

The method involves converting neuronal reconstructions from the NeuromorphoVis repository into 3D-printable mold files. An operator prints these molds using a consumer-grade desktop 3D printer with water-soluble polyvinyl alcohol filament. The molds are then filled with casting materials like polyurethane or silicone rubber, before the mold is dissolved. We tested our method on various neuron morphologies, assessing the method’s effectiveness, labor, processing times and costs. Additionally, university biology students compared our 3D-printed neuron models with commercially produced counterparts through a survey, evaluating them based on their direct experience with both models.

Findings

An operator can produce a neuron morphology’s initial 3D replica in about an hour of labor, excluding a one- to three-day curing period, while subsequent copies require around 30 min each. Our method provides an affordable approach to crafting tangible 3D neuron representations, presenting a viable alternative to direct 3D printing with varied material options ensuring both flexibility and durability. The created models accurately replicate the fidelity and intricacy of original computer aided design (CAD) files, making them ideal for tactile use in neuroscience education.

Originality/value

The development of data processing and cost-effective casting method for this application is novel. Compared to a previous study, this method leverages lower-cost fused filament fabrication 3D printing to create accurate physical 3D representations of neurons. By using readily available materials and a consumer-grade 3D printer, the research addresses the high cost associated with alternative direct 3D printing techniques to produce such intricate and robust models. Furthermore, the paper demonstrates the practicality of these 3D neuron models for educational purposes, making a valuable contribution to the field of neuroscience education.

Open Access
Article
Publication date: 21 June 2024

Francesco Bandinelli, Martina Scapin and Lorenzo Peroni

Finite element (FE) analysis can be used for both design and verification of components. In the case of 3D-printed materials, a proper characterization of properties, accounting…

444

Abstract

Purpose

Finite element (FE) analysis can be used for both design and verification of components. In the case of 3D-printed materials, a proper characterization of properties, accounting for anisotropy and raster angles, can help develop efficient material models. This study aims to use compression tests to characterize short carbon-reinforced PA12 made by fused filament fabrication (FFF) and to model its behaviour by the FE method.

Design/methodology/approach

In this work, the authors focus on compression tests, using post-processed specimens to overcome external defects introduced by the FFF process. The material’s elastoplastic mechanical behaviour is modelled by an elastic stiffness matrix, Hill’s anisotropic yield criterion and Voce’s isotropic hardening law, considering the stacking sequence of raster angles. A FE analysis is conducted to reproduce the material’s compressive behaviour through the LS-DYNA software.

Findings

The proposed model can capture stress values at different deformation levels and peculiar aspects of deformed shapes until the onset of damage mechanisms. Deformation and damage mechanisms are strictly correlated to orientation and raster angle.

Originality/value

The paper aims to contribute to the understanding of 3D-printed material’s behaviour through compression tests on bulk 3D-printed material. The methodology proposed, enriched with an anisotropic damage criterion, could be effectively used for design and verification purposes in the field of 3D-printed components through FE analysis.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 2 January 2024

Guillermo Guerrero-Vacas, Jaime Gómez-Castillo and Oscar Rodríguez-Alabanda

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using…

1160

Abstract

Purpose

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using fused filament fabrication (FFF) with polylactic acid (PLA) and glycol-modified polyethylene terephthalate (PETG) is proposed as an economical, simpler and faster solution compared to traditional metallic molds or three-dimensional (3D) printing with other difficult-to-print thermoplastics, which are prone to shrinkage and delamination (acrylonitrile butadiene styrene, polypropilene-PP) or high-cost due to both material and printing equipment expenses (PEEK, polyamides or polycarbonate-PC). The purpose of this study has been to evaluate the ease of release of PUR foam on these materials in combination with release agents to facilitate the mulding/demoulding process.

Design/methodology/approach

PETG, PLA and hardenable polylactic acid (PLA 3D870) have been evaluated as mold materials in combination with aqueous and solvent-based release agents within a full design of experiments by three consecutive molding/demolding cycles.

Findings

PLA 3D870 has shown the best demoldability. A mold expressly designed to manufacture a foam cushion has been printed and the prototyping has been successfully achieved. The demolding of the part has been easier using a solvent-based release agent, meanwhile the quality has been better when using a water-based one.

Originality/value

The combination of PLA 3D870 and FFF, along with solvent-free water-based release agents, presents a compelling low-cost and eco-friendly alternative to traditional metallic molds and other 3D printing thermoplastics. This innovative approach serves as a viable option for rapid tooling in PUR foam molding.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 26 March 2024

Sergio de la Rosa, Pedro F. Mayuet, Cátia S. Silva, Álvaro M. Sampaio and Lucía Rodríguez-Parada

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour…

Abstract

Purpose

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour for their application in a methodology for the design and development of personalized elastic therapeutic products.

Design/methodology/approach

Lattice samples were designed and manufactured using extrusion-based additive manufacturing technologies. Mechanical tests were carried out on lattice samples for elasticity characterization purposes. The relationships between sample stiffness and key geometric and manufacturing variables were subsequently used in the case study on the design of a pressure cushion model for validation purposes. Differentiated areas were established according to patient’s pressure map to subsequently make a correlation between the patient’s pressure needs and lattice samples stiffness.

Findings

A substantial and wide variation in lattice compressive behaviour was found depending on the key study variables. The proposed methodology made it possible to efficiently identify and adjust the pressure of the different areas of the product to adapt them to the elastic needs of the patient. In this sense, the characterization lattice samples turned out to provide an effective and flexible response to the pressure requirements.

Originality/value

This study provides a generalized foundation of lattice structural design and adjustable stiffness in application of pressure cushions, which can be equally applied to other designs with similar purposes. The relevance and contribution of this work lie in the proposed methodology for the design of personalized therapeutic products based on the use of individual lattice structures that function as independent customizable cells.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 January 2023

Mustafa S. Al-Khazraji, S.H. Bakhy and M.J. Jweeg

The purpose of this review paper is to provide a review of the most recent advances in the field of manufacturing composite sandwich panels along with their advantages and…

Abstract

Purpose

The purpose of this review paper is to provide a review of the most recent advances in the field of manufacturing composite sandwich panels along with their advantages and limitations. The other purpose of this paper is to familiarize the researchers with the available developments in manufacturing sandwich structures.

Design/methodology/approach

The most recent research articles in the field of manufacturing various composite sandwich structures were reviewed. The review process started by categorizing the available sandwich manufacturing techniques into nine main categories according to the method of production and the equipment used. The review is followed by outlining some automatic production concepts toward composite sandwich automated manufacturing. A brief summary of the sandwich manufacturing techniques is given at the end of this article, with recommendations for future work.

Findings

It has been found that several composite sandwich manufacturing techniques were proposed in the literature. The diversity of the manufacturing techniques arises from the variety of the materials as well as the configurations of the final product. Additive manufacturing techniques represent the most recent trend in composite sandwich manufacturing.

Originality/value

This work is valuable for all researchers in the field of composite sandwich structures to keep up with the most recent advancements in this field. Furthermore, this review paper can be considered as a guideline for researchers who are intended to perform further research on composite sandwich structures.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 2 August 2024

Peng Cai, Pingjie Zhang, Xiong Xiao, Wenneng Yang, Xiaohan Wu, Lingli Ni and Fei Zheng

The purpose of this paper is to investigate the effect of mullite on the mechanical properties and friction of carbon fiber (CF)-reinforced friction material.

Abstract

Purpose

The purpose of this paper is to investigate the effect of mullite on the mechanical properties and friction of carbon fiber (CF)-reinforced friction material.

Design/methodology/approach

CF-reinforced friction materials with varying content of mullite were fabricated by hot press molding, and then the tribological properties were tested on the MRH-3-type tribometer under ambient conditions with the ring-on-block configuration.

Findings

The experimental results indicated that the addition of mullite increased the density and compressive strength of friction material. However, the flexural strength of friction material decreased by 16% with the addition of 15 Wt.% mullite. The friction coefficient was proportional to the mullite content. Friction material with 12.5 Wt.% mullite showed the highest friction stability under different loads, whereas friction material with 10 Wt.% mullite exhibited the highest friction stability under different sliding speeds.

Originality/value

By boosting the resistance to deformation under load and increasing the specific heat capacity, mullite contributed significantly to the friction stability of the friction material.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 April 2024

Sangryul Go

The purpose of this study is to investigate the accumulation process of transfer film formation and dissipation and its effect on friction coefficients in non asbestos organic…

Abstract

Purpose

The purpose of this study is to investigate the accumulation process of transfer film formation and dissipation and its effect on friction coefficients in non asbestos organic friction materials with various lubricant FeS2 contents.

Design/methodology/approach

In total, 2.5%, 5% and 10% FeS2 were added as lubricating components to the friction materials. Friction tests composed of two stages were conducted for these friction materials, and the friction surfaces of the counterpart discs were examined using scanning electron microscopy.

Findings

The transfer film formation reduced the friction coefficients, and the transfer film dissipation influenced the recovery of the friction coefficients. The effect of a high content of FeS2 was to promote the transfer film formation at high temperatures and to hinder the transfer film dissipation at low temperatures, thus resulting in a decrease in the friction coefficients at high temperatures together with recovery retardation at low temperatures.

Originality/value

FeS2 contributed to the transfer film formation at high temperatures in the fade test but hindered the transfer film removal in the recovery test, resulting in the retardation of friction coefficient recovery. The mechanism by which the FeS2 lubricant component affected the transfer film formation and dissipation was analyzed and attributed to the different levels of FeS2 pyrolysis at different temperature levels.

Details

Industrial Lubrication and Tribology, vol. 76 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 May 2024

Erfan Anjomshoa

Nowadays, thermal comfort plays a prominent role in contemporary construction practices. Appropriate thermal insulation not only offers energy efficiency benefits in buildings but…

23

Abstract

Purpose

Nowadays, thermal comfort plays a prominent role in contemporary construction practices. Appropriate thermal insulation not only offers energy efficiency benefits in buildings but also enhances occupant well-being, comfort, and productivity. Therefore, a comprehensive understanding of the thermal properties of building materials is essential. This research aims to prepare and investigate a lightweight gypsum-based composite incorporating nano montmorillonite with advanced thermal insulation properties, considering both quality and cost-effectiveness while ensuring environmental compatibility.

Design/methodology/approach

This study adopts a laboratory experimental approach. A gypsum sample (without additives) and seven samples of gypsum combined with varying percentages of sodium and calcium montmorillonite nanoclays undergo extensive testing and analysis. Subsequently, the properties of these samples are compared.

Findings

The results indicate that adding montmorillonite nanoclays to gypsum composites reduces the density of the tested samples and increases their porosity. Moreover, the thermal conductivity coefficient decreases in these samples, significantly improving the thermal insulation properties of the lightweight gypsum plaster. This improvement is more pronounced in samples containing sodium montmorillonite nanoclay compared to calcium-based samples. Additionally, the investigations reveal that compressive strength decreases with the addition of montmorillonite to the samples.

Originality/value

In this research, laboratory experiments were conducted to investigate the physical and mechanical properties of gypsum plaster with varying percentages of sodium and calcium montmorillonite nanoclays. The studied properties include density, porosity, thermal conductivity coefficient, and compressive strength. Additionally, stress-strain diagrams, elastic modulus, and initial and secondary critical stresses were analyzed for each specimen.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

1 – 10 of over 9000