Search results

1 – 10 of 61
Article
Publication date: 1 August 2016

David O. Obada, David Dodoo-Arhin, Muhammad Dauda, Fatai O. Anafi, Abdulkarim S. Ahmed, Olusegun A. Ajayi and Ibraheem A. Samotu

This work aims to analyze the effect of mechanical activation on structural disordering (amorphization) in an alumina-silica ceramics system and formation of mullite most notably…

Abstract

Purpose

This work aims to analyze the effect of mechanical activation on structural disordering (amorphization) in an alumina-silica ceramics system and formation of mullite most notably at a lower temperature using X-ray diffraction (XRD). Also, an objective of this work is to focus on a low-temperature fabrication route for the production of mullite powders.

Design/methodology/approach

A batch composition of kaolin, alumina and silica was manually pre-milled and then mechanically activated in a ball mill for 30 and 60 min. The activated samples were sintered at 1,150°C for a soaking period of 2 h. Mullite formation was characterized by XRD and scanning electron microscopy (SEM).

Findings

It was determined that the mechanical activation increased the quantity of the mullite phase. SEM results revealed that short milling times only helped in mixing of the precursor powders and caused partial agglomeration, while longer milling times, however, resulted in greater agglomeration.

Originality/value

It is noted that, a manual pre-milling of approximately 20 min and a ball milling approach of 60 min milling time can be suggested as the optimum milling time for the temperature decrease succeeded for the production of mullite from the specific stoichiometric batch formed.

Details

World Journal of Engineering, vol. 13 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 September 1960

E. Steinhoff and H. Sachsse

There is still a real demand in the glass industry for fire bricks for crucibles, e.g. for the production of glass with low iron content, or special glasses. The results mentioned…

Abstract

There is still a real demand in the glass industry for fire bricks for crucibles, e.g. for the production of glass with low iron content, or special glasses. The results mentioned herein should not be taken to mean that in future, fire bricks used for glass production should, in all cases, be replaced by ZAC bricks. For high quality production, however, the use of the relatively expensive type is justified.

Details

Anti-Corrosion Methods and Materials, vol. 7 no. 9
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 16 March 2011

P. Zhang, K. Wang and S. Guo

In this paper, the chemical reactions between the white rice hull ashes and the aluminum powders, obtained from milled beverage cans, were investigated under different temperature…

Abstract

In this paper, the chemical reactions between the white rice hull ashes and the aluminum powders, obtained from milled beverage cans, were investigated under different temperature and atmosphere conditions. Controlling the temperature and the atmosphere conditions resulted in different composites. XRD and SEM characterization technologies were employed to examine the features of the produced composites. Without the presence of oxygen, the white rice hull ashes and the aluminum powders reacted to form the ceramic-metal composites with a networked structure. After raising the temperature from 720°C to 1450°C, the Al2O3 in the composites tends to turn into crystal structure from the original amorphous form. On the other hand, with an O2 atmosphere, the white ash and aluminum system would evolve to mullite or mullite/alumina composites, depending on the ratio of silicon and aluminum in the initial system. This study extended the application of the rice hull, which is a major agricultural waste, and may pave a new route to deal with the agricultural problem as well provide a new industry opportunity.

Details

World Journal of Engineering, vol. 8 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 27 July 2012

Xiaoyong Tian, Dichen Li and Juergen G. Heinrich

The purpose of this paper is to study the rapid prototyping of porcelain products by using layer‐wise slurry deposition (LSD), in order to reduce the time to market of new or…

Abstract

Purpose

The purpose of this paper is to study the rapid prototyping of porcelain products by using layer‐wise slurry deposition (LSD), in order to reduce the time to market of new or customized porcelain products or artworks.

Design/methodology/approach

The properties such as phase composition, microstructure, shrinkage, density, and mechanical strength, of laser sintered (LS) and biscuit fired (BF) samples, before and after post sintering in a furnace, were studied and compared with each other.

Findings

The laser sintered sample was comparable with the biscuit fired sample in porosity, but had just half the mechanical strength of the latter due to the layer‐wise fabrication process. The feasibility of rapid prototyping of porcelain products was validated by the successful fabrication of some porcelain samples, which showed that the relatively low mechanical strength of the laser sintered sample was still high enough for the following handling processes, such as surface glazing and glost firing.

Originality/value

The paper demonstrates the possibility of rapid prototyping of porcelain components and the models produced by using LSD process.

Article
Publication date: 5 March 2010

Keiji Houjou, Kotoji Ando and Koji Takahashi

Zirconia ceramics exhibit high strength and fracture toughness. The purpose of this paper is to research a possibility of crack healing in zirconia ceramics.

Abstract

Purpose

Zirconia ceramics exhibit high strength and fracture toughness. The purpose of this paper is to research a possibility of crack healing in zirconia ceramics.

Design/methodology/approach

ZrO2/SiC composite ceramics are sintered and subjected to three‐point bending. A surface crack of 100 μm in diameter is formed on each specimen. The cracks are healed and the specimens are tested under bending.

Findings

The paper finds that ZrO2/SiC composite ceramic material had a high crack‐healing ability at a considerably low temperature. For example, a crack of 100 μm in diameter is healed even at 600°C.

Research limitations/implications

The paper provides a low temperature healing and a new mechanism of crack healing.

Originality/value

The paper shows the healing temperature and the minimum time required to heal showed a good proportional relation on the Arrhenius plot at temperatures of 600‐800°C. Moreover, the crack healing is caused by SiO2 cristobalite produced during the healing.

Details

International Journal of Structural Integrity, vol. 1 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 10 August 2015

Mica Grujicic, Jennifer Snipes, Ramin Yavari, S. Ramaswami and Rohan Galgalikar

The purpose of this paper is to prevent their recession caused through chemical reaction with high-temperature water vapor, SiC-fiber/SiC-matrix ceramic-matrix composite (CMC…

Abstract

Purpose

The purpose of this paper is to prevent their recession caused through chemical reaction with high-temperature water vapor, SiC-fiber/SiC-matrix ceramic-matrix composite (CMC) components used in gas-turbine engines are commonly protected with so-called environmental barrier coatings (EBCs). EBCs typically consist of three layers: a top thermal and mechanical protection coat; an intermediate layer which provides environmental protection; and a bond coat which assures good EBC/CMC adhesion. The materials used in different layers and their thicknesses are selected in such a way that the coating performance is optimized for the gas-turbine component in question.

Design/methodology/approach

Gas-turbine engines, while in service, often tend to ingest various foreign objects of different sizes. Such objects, entrained within the gas flow, can be accelerated to velocities as high as 600 m/s and, on impact, cause substantial damage to the EBC and SiC/SiC CMC substrate, compromising the component integrity and service life. The problem of foreign object damage (FOD) is addressed in the present work computationally using a series of transient non-linear dynamics finite-element analyses. Before such analyses could be conducted, a major effort had to be invested toward developing, parameterizing and validating the constitutive models for all attendant materials.

Findings

The computed FOD results are compared with their experimental counterparts in order to validate the numerical methodology employed.

Originality/value

To the authors’ knowledge, the present work is the first reported study dealing with the computational analysis of the FOD sustained by CMCs protected with EBCs.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 December 2023

Prathamesh Gaikwad and Sandeep Sathe

The purpose of this paper is to study and analyze the effects of fly ash (FA) as a mineral admixture on compressive strength (CS), carbonation resistance and corrosion resistance…

Abstract

Purpose

The purpose of this paper is to study and analyze the effects of fly ash (FA) as a mineral admixture on compressive strength (CS), carbonation resistance and corrosion resistance of reinforced concrete (RC). In addition, the utilization of inexpensive and abundantly available FA as a cement replacement in concrete has several benefits including reduced OPC usage and elimination of the FA disposal problem.

Design/methodology/approach

Reinforcement corrosion and carbonation significantly affect the strength and durability of the RC structures. Also, the utilization of FA as green corrosion inhibitors, which are nontoxic and environmentally friendly alternatives. This review discusses the effects of FA on the mechanical characteristics of concrete. Also, this review analyzes the impact of FA as a partial replacement of cement in concrete and its effect on the depth of carbonation in concrete elements and the corrosion rate of embedded steel as well as the chemical composition and microstructure (X-ray diffraction analysis and scanning electron microscopy) of FA concrete were also reviewed.

Findings

This review provides a clear analysis of the available study, providing a thorough overview of the current state of knowledge on this topic. Regarding concrete CS, the findings indicate that the incorporation of FA often leads to a loss in early-age strength. However, as the curing period increased, the strength of fly ash concrete (FAC) increased with or even surpassed that of conventional concrete. Analysis of the accelerated carbonation test revealed that incorporating FA into the concrete mix led to a shallower carbonation depth and slower diffusion of carbon dioxide (CO2) into the concrete. Furthermore, the half-cell potential test shows that the inclusion of FA increases the durability of RC by slowing the rate of steel-reinforcement corrosion.

Originality/value

This systematic review analyzes a wide range of existing studies on the topic, providing a comprehensive overview of the research conducted so far. This review intends to critically assess the enhancements in mechanical and durability attributes (such as CS, carbonation and corrosion resistance) of FAC and FA-RC. This systematic review has practical implications for the construction and engineering industries. This can support engineers and designers in making informed decisions regarding the use of FA in concrete mixtures, considering both its benefits and potential drawbacks.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 November 1961

A.E. DODD

To begin this paper provocatively I will put forward the opinion that information work in any field is always largely empirical; information work in a technology cannot be…

Abstract

To begin this paper provocatively I will put forward the opinion that information work in any field is always largely empirical; information work in a technology cannot be anything else but empirical. It is impossible to organize an information service for a technology until the broad outline of the technology itself has been understood and assimilated. This being so, it is only possible to speak to any purpose on information work in a technology if, at each stage, some specific technology is used as a framework of reference; the only such framework known to the present author is that provided by the ceramic industry. It has been objected that the ceramic industry cannot provide a broad enough framework to give interest to an audience drawn from other industries; I hope to be able to show that this objection is not valid. To do so, the term ‘ceramics’ must first be defined.

Details

Aslib Proceedings, vol. 13 no. 11
Type: Research Article
ISSN: 0001-253X

Article
Publication date: 6 October 2022

Kunhong Hu, Yan Miao and Ziyan Lu

This paper aims to explore the preparation and tribological performance of MoS2 nanoparticles supported on fly ash (FA) microparticles.

Abstract

Purpose

This paper aims to explore the preparation and tribological performance of MoS2 nanoparticles supported on fly ash (FA) microparticles.

Design/methodology/approach

FA was activated by NaOH, oleic acid and HCl to obtain three modified FA samples. Nano-MoS2 was deposited on them to form MoS2/FA additives for poly-α-olefin (PAO) modification. Tribological tests were conducted on a reciprocating rig through the ball-on-disk friction manner. Using X-ray diffraction, scanning electron microscope, energy dispersive spectrometer, Raman spectrometer and element analyzers, the products and their lubrication mechanisms were characterized.

Findings

At 1.5 Wt.%, nano-MoS2 and MoS2/FA could remarkably improve the tribological properties of PAO. The nano-MoS2 deposited on the HCl-activated FA presented better lubrication performance than nano-MoS2. It could reduce friction and wear by approximately 27% and approximately 66%, respectively. The lubrication of MoS2/FA can be attributed to the formation of MoS2 and carbon containing lubricating film.

Originality/value

FA was applied as a supporter to prepare MoS2/FA lubricants. The reuse of FA, a solid waste, is important for environmental protection. Moreover, MoS2/FA is more economical than nano-MoS2 as a lubricant, because it contains approximately 71% of low-cost FA.

Details

Industrial Lubrication and Tribology, vol. 75 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 June 2008

J. Paulo Davim, Edgar Santos, Catarina Pereira and J.M.F. Ferreira

The paper aims to study the friction behaviour of alumina and zirconia against steel DIN‐Ck45K under water lubricated conditions.

Abstract

Purpose

The paper aims to study the friction behaviour of alumina and zirconia against steel DIN‐Ck45K under water lubricated conditions.

Design/methodology/approach

The tests were performed with a contact stress of 3.5 MPa and a constant sliding velocity of 0.5 m/s for 5.35 km of sliding distance, using a pin‐on‐disk tribometer.

Findings

The friction coefficient and the energy dissipated in the contact were considered in this comparative study. The zirconia ceramic present less friction coefficient and contact temperature than alumina ceramic. The zirconia present about 70 per cent of the energy dissipated against when compared with the alumina. Abrasive scars of the surface ploughing were observed on every wear track for two pairs in contact.

Research limitations/implications

This research used only one test condition.

Originality/value

The paper describes the tribological conditions used and a new methodology based on the energy dissipated in the contact is proposed.

Details

Industrial Lubrication and Tribology, vol. 60 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 61