Search results

1 – 3 of 3
Article
Publication date: 2 October 2020

Faraz Hoseininejad, Saeed Dinarvand and Mohammad Eftekhari Yazdi

This study aims to investigate numerically the problem of conjugate conduction and mixed convection heat transfer of a nanofluid in a rotational/stationary circular enclosure…

103

Abstract

Purpose

This study aims to investigate numerically the problem of conjugate conduction and mixed convection heat transfer of a nanofluid in a rotational/stationary circular enclosure using a two-phase mixture model.

Design/methodology/approach

Hot and cold surfaces on the wall or inside the enclosure (heater and cooler) are maintained at constant temperature of Th and Tc, respectively, whereas other parts are thermally insulated. To examine the effects of various parameters such as Richardson number (0.01 = Ri =100), thermal conductivity ratio of solid to base fluid (1 = Kr = 100), volume fraction of nanoparticle (0 = φ = 0.05), insertion of conductive covers (C.Cs) around the heater in a different shape (triangular, circular or square), segmentation and arrangement of the conductive blocks (C.Bs) and rotation direction of the enclosure on the flow structure and heat transfer rate, two-dimensional equations of mass, momentum and energy conservation, as well as volume fraction, are solved using finite volume method and Semi-Implicit Method for Pressure Linked Equations (SIMPLE) algorithm.

Findings

The results show that inserting C.C around heater can increase or decrease heat transfer rate, and it depends on thermal conductivity ratio of solid to pure fluid. Also, it is found that by the division of C.B and location of its portions in a horizontal configuration, heat transfer rate reduces. Moreover, it is observed that external heating and cooling of the enclosure causes enhancement of heat transfer relative to that of internal heating and cooling. Finally, results illustrate that under the condition that cylinders rotate in the same direction, the heat transfer rate increases as compared to those that rotate in the opposite direction. Hence rotation direction of cylinders can be used as a desired parameter for controlling heat transfer rate.

Originality/value

A comprehensive report of results for the problem of conjugate conduction and mixed convection heat transfer in a circular cylinder containing different shapes of C.C, conducting obstacle and heater and cooler has been presented. An efficient numerical technique has been developed to solve this problem. The achievements of this paper are purely original, and the numerical results were never published by any researcher.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 July 2021

Nirmalendu Biswas, Nirmal Kumar Manna, Dipak Kumar Mandal and Rama Subba Reddy Gorla

This study aims to investigate thermo-bioconvection of oxytactic microorganisms occurring in a nanofluid-saturated porous lid-driven cavity in the presence of the magnetic field…

Abstract

Purpose

This study aims to investigate thermo-bioconvection of oxytactic microorganisms occurring in a nanofluid-saturated porous lid-driven cavity in the presence of the magnetic field. The heating is provided through a bell-shaped curved bottom wall heated isothermally. The effects of the peak height of the curved bottom wall, bioconvection Rayleigh number (Rb), Darcy number (Da), Hartmann number (Ha), Peclet number (Pe), Lewis number (Le) and Grashof number (Gr) on the flow structure, temperature and the iso-concentrations of oxygen and microorganisms are examined and explained systematically. The local and global, characteristics of heat transfer and oxygen concentration, are estimated through the Nusselt number (Nu) and Sherwood number (Sh), respectively.

Design/methodology/approach

The governing equations of continuity, momentum, energy and additionally consisting of species transport equations for oxygen concentration and population density of microorganisms, are discretized by the finite volume method. The evolved linearized algebraic equations are solved iteratively through the alternate direction implicit scheme and the tri-diagonal matrix algorithm. The computation domain has meshed in non-uniform staggered grids. The entire computations are carried out through an in-house developed code written in FORTRAN following the SIMPLE algorithm. The third-order upwind and second-order central difference schemes are used for handling the advection and diffusion terms, respectively. The convergence criterion for the iterative process of achieving the final solution is set as 10–8 and 10–10, respectively, for the maximum residuals and the mass defect.

Findings

The results show that the flow and temperature distribution along with the iso-concentrations of oxygen and microorganisms are markedly affected by the curvature of the bottom wall. A secondary circulation is developed in the cavity that changes the flow physics significantly. The Nu increases with the peak height of the curved bottom wall and Da; however, it decreases with Ha and Rb. The Sh increases with Da but decreases with Ha and the peak height of the curved wall.

Research limitations/implications

A similar study of bioconvection could be extended further considering thermal radiation, chemical attraction, gravity, light, etc.

Practical implications

The outcomes of this investigation could be used in diverse fields of multi-physical applications such as in food industries, chemical processing equipment, fuel cell technology and enhanced oil recovery.

Originality/value

The insights of bioconvection of oxytactic microorganisms using a curved bottom surface along with other physical issues such as nanofluid, porous substance and magnetic field are addressed systematically and thoroughly.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 November 2021

Dipak Kumar Mandal, Milan Kumar Mondal, Nirmalendu Biswas, Nirmal K. Manna, Rama Subba Reddy Gorla and Ali J. Chamkha

This study aims to focus on a thermo-fluid flow in a partially driven cavity (PDC) using Cu-water nanoliquid, magnetic field and porous substance. The cooling and sliding motion…

Abstract

Purpose

This study aims to focus on a thermo-fluid flow in a partially driven cavity (PDC) using Cu-water nanoliquid, magnetic field and porous substance. The cooling and sliding motion are applied on the upper half of the vertical walls and the bottom wall is heated. Thermal characteristics are explored to understand magnetohydrodynamic convection in a nanoliquid filled porous system from a fundamental viewpoint. The governing parameters involved to cater to the moving speed of the sidewalls and partial translation direction are the relative strength of thermal buoyancy, porous substance permeability, magnetic field intensity, nanoparticle suspension and orientation of the cavity.

Design/methodology/approach

The coupled transport equations of the problem are solved using an in-house developed finite volume-based computing code. The staggered nonuniform grids along the x and y directions are used. The SIMPLE algorithm technique is considered for the iterative solution of the discretized equations with the convergence check of the continuity mass defect below 10–10.

Findings

The present study unveils that the heat transfer enhances at higher Ri with the increasing value of Re, irrespective of the presence of a porous substance or magnetic field or the concentration of nanofluid. Apart from different flow controlling parameters, the wall motions have a significant contribution to the formation of flow vortices and corresponding heat transfer. Orientation of the cavity significantly alters the transport process within the cavity. The upward wall velocity for both the sidewalls could be a better choice to enhance the high heat transfer (approximately 88.39% at Richardson and Reynolds numbers, respectively, 0.1 and 200).

Research limitations/implications

Considering other multi-physical scenarios like porous layers, conducting block, microorganisms and the present investigation could be further extended to analyze a problem of complex flow physics.

Practical implications

In this study, the concept of partially driven wall motion has been adopted under the Cu-water nanoliquid, magnetic field, porous substance and oblique enclosure. All the involved flow-controlling parameters have been experimented with under a wide parametric range and associated thermo-flow physics are analyzed in detail. This outcome of this study can be very significant for designing as well as controlling thermal devices.

Originality/value

The convective process in a partially driven cavity (PDC) with the porous medium has not been investigated in detail considering the multi-physical scenarios. Thus, the present effort is motivated to explore the thermal convection in such an oblique enclosure. The enclosure is heated at its bottom and has partially moving-wall cold walls. It consists of various multi-physical conditions like porous structure, magnetic field, Cu–H2O nanoliquid, etc. The system performance is addressed under different significant variables such as Richardson number, Reynolds number, Darcy number, Hartmann number, nanoliquid concentration and orientation of cavity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 3 of 3