Search results

1 – 10 of 61
Article
Publication date: 20 July 2023

Nimali Erandathi Rathnasiri, Nayanthara De Silva and Janaka Wijesundara

The maintainability of urban spaces has become critical with rapid urbanization to create an effective and safe environment for the increasing population. The absence of…

Abstract

Purpose

The maintainability of urban spaces has become critical with rapid urbanization to create an effective and safe environment for the increasing population. The absence of scientific studies exploring the factors that affect urban space maintainability (USM) has hindered the incorporation of maintainability aspects during the urban space planning and designing stages. This paper aims to establish critical factors for USM.

Design/methodology/approach

Qualitative content analysis is performed under an abductive approach to developing USM factors. A bibliometric search is conducted using databases including Scopus Elsevier, Emerald Insight, Science Direct, IEEE XPLORE and the American Society of Civil Engineers. The selected primary data set comprises journal papers on USM published after 2000. Seventy-three journal articles are selected through a comprehensive screening procedure and subjected to further analysis. The literature findings are processed via a software-assisted systematic coding and visualizing of the key data using NVivo 12 software. The coded USM factors are validated based on experts’ consensus statements by conducting an expert focus group discussion.

Findings

Twelve critical factors are established for USM; they include six design stage-related factors, one construction stage-related factor and five operational stage-related factors.

Research limitations/implications

Established USM factors give an insight into the main focus areas when incorporating maintainability into urban spaces.

Originality/value

The authors establish a set of maintainability factors for urban spaces based on the life cycle stages. USM factors such as vegetation management, interdepartmental coordination and work zone safety draw attention to context-specific aspects of USM.

Article
Publication date: 13 December 2023

Kofi Agyekum, Annabel Morkporkpor Ami Dompey, Hayford Pittri and Edward Ayebeng Botchway

Design for maintainability (DfM) is a construction technique that links maintenance objectives with the design process. Adopting DfM within the construction industry is a solution…

Abstract

Purpose

Design for maintainability (DfM) is a construction technique that links maintenance objectives with the design process. Adopting DfM within the construction industry is a solution that can make the maintenance of buildings cost-efficient and simpler. This study investigates the level of implementation of DfM among design professionals in the Ghanaian construction industry (GCI).

Design/methodology/approach

The data from design professionals comprising architects and civil/structural engineers were collected via a questionnaire survey. The data obtained were analyzed using descriptive and inferential statistical tests.

Findings

The findings revealed a high level of engagement of design professionals in DfM practices in the Ghanaian construction sector. This high level of engagement is credited to the high level of awareness of the concept of DfM among design professionals, the level of education of design professionals, experience in professional roles and familiarity with the principles of DfM.

Originality/value

This study offers information and fresh perspectives on how cutting-edge DfM principles are practiced in the GCI. The study raises awareness and the level of DfM implementation among design professionals in the GCI. It offers information on how the application of DfM principles enhances cost-effective maintenance that allows facilities to stand the test of time and prove more relevant for users. The understanding and application of DfM in different countries are important if such concepts are to take deep root in the global built environment sector.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 12 March 2024

Ali Rahimazar, Ali Nouri Qarahasanlou, Dina Khanzadeh and Milad Tavaghi

Resilience as a novel concept has attracted the most attention in the management of engineering systems. The main goal of engineering systems is production assurance and…

Abstract

Purpose

Resilience as a novel concept has attracted the most attention in the management of engineering systems. The main goal of engineering systems is production assurance and increasing customer satisfaction which depends on the suitable performance of mechanical equipment. “A resilient system is defined as a system that is resistant to disruption and failures and can recover itself and returns to the state before failure as soon as possible in the case of failure.” Estimate the value of the system’s resilience to increase its resilience by covering the weakness in the resilience indexes of the system.

Design/methodology/approach

In this article, a suitable approach to estimating resilience in complex engineering systems management in the field of mining has been presented. Accordingly, indexes of reliability, maintainability, supportability, efficiency index of prognostics and health management of the system, and ultimately the organization resilience index, have been used to evaluate the system resilience.

Findings

The results of applying this approach indicate the value of 80% resilience if the risk factor is considered and 98% if the mentioned factors are ignored. Also, the value of 58% resilience of this organization’s management group indicates the weakness of situational awareness and weakness in the vulnerable points of the organization.

Originality/value

To evaluate the resilience in this article, five indicators of reliability, maintainability, and supportability are used as performance indicators. Also, organization resilience and the prognostic and health management of the system (PHM) are used as management indicators. To achieve more favorable results, the environmental and operational variables governing the system have been used in performance indicators, and expert experts' opinions have been used in management indicators.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Open Access
Article
Publication date: 28 February 2024

Hassan Th. Alassafi, Khalid S. Al-Gahtani, Abdulmohsen S. Almohsen and Abdullah M. Alsugair

Heating, ventilating, air-conditioning and cooling (HVAC) systems are crucial in daily health-care facility services. Design-related defects can lead to maintenance issues…

Abstract

Purpose

Heating, ventilating, air-conditioning and cooling (HVAC) systems are crucial in daily health-care facility services. Design-related defects can lead to maintenance issues, causing service disruptions and cost overruns. These defects can be avoided if a link between the early design stages and maintenance feedback is established. This study aims to use experts’ experience in HVAC maintenance in health-care facilities to list and evaluate the risk of each maintenance issue caused by a design defect, supported by the literature.

Design/methodology/approach

Following semistructured interviews with experts, 41 maintenance issues were identified as the most encountered issues. Subsequently, a survey was conducted in which 44 participants evaluated the probability and impact of each design-caused issue.

Findings

Chillers were identified as the HVAC components most prone to design defects and cost impact. However, air distribution ducts and air handling units are the most critical HVAC components for maintaining healthy conditions inside health-care facilities.

Research limitations/implications

The unavailability of comprehensive data on the cost impacts of all design-related defects from multiple health-care facilities limits the ability of HVAC designers to furnish case studies and quantitative approaches.

Originality/value

This study helps HVAC designers acquire prior knowledge of decisions that may have led to unnecessary and avoidable maintenance. These design-related maintenance issues may cause unfavorable health and cost consequences.

Open Access
Article
Publication date: 17 November 2023

Qi Xiao, Weidong Yu, Guangrong Tian and Fangxuan Li

This study aims to introduce the achievements and benefits of applying wheel/rail-force–based maintenance interval extension of the C80 series wagon in China.

Abstract

Purpose

This study aims to introduce the achievements and benefits of applying wheel/rail-force–based maintenance interval extension of the C80 series wagon in China.

Design/methodology/approach

Chinese wagons' existing maintenance strategy had left a certain safety margin for the characteristics of widely running range, unstable service environment and submission to transportation organization requirements. To reduce maintenance costs, China railway (CR) has attempted to extend the maintenance interval since 2020. The maintenance cycle of C80 series heavy haul wagons is extended by three months (no stable routing) or 50,000 km (regular routing). However, in the meantime, the alarming rate of the running state, a key index to reflect the severe degree of hunting stability, by the train performance detection system (TPDS) for the C80 series heavy haul wagons has increased significantly.

Findings

The present paper addresses a big data statistical way to evaluate the risk of allowing the C80 series heavy haul wagons to remain in operation longer than stipulated by the maintenance interval initial set. Through the maintenance and wayside-detector data, which is divided into three stages, the extension period (three months), the current maintenance period and the previous maintenance period, this method reveals the alarming rate of hunting was correlated with maintenance interval. The maintainability of wagons will be achieved by utilizing wagon performance degradation modeling with the state of the wheelset and the often-contact side bearing. This paper also proposes a statistical model to return to the average safety level of the previous maintenance period's baseline through correct alarming thresholds for unplanned corrective maintenance.

Originality/value

The paper proposes an approach to reduce safety risk due to maintenance interval extension by effective maintenance program. The results are expected to help the railway company make the optimal solution to balance safety and the economy.

Open Access
Article
Publication date: 17 May 2022

Mohammad B. Hamida, Tuuli Jylhä, Hilde Remøy and Vincent Gruis

Adaptability is an inherent quality in building circularity, as adaptability can physically facilitate the reversibility of materials in a closed-reversible chain, also called…

4232

Abstract

Purpose

Adaptability is an inherent quality in building circularity, as adaptability can physically facilitate the reversibility of materials in a closed-reversible chain, also called “loops”. Nevertheless, positioning adaptability in circularity-oriented models could overlook some of the contextual considerations that contribute to the utility for the built environment. This paper reconceptualises building adaptability to incorporate circularity, in order to facilitate for the resource loops whilst preserving the long-lasting functionality in buildings.

Design/methodology/approach

An integrative literature review on adaptability and circularity of buildings was conducted using systematic search approach. From the initial database of 4631 publications, 104 publications were included for the final analysis. A comparative analysis of definitions and determinants of both concepts was conducted to reconceptualise circular building adaptability.

Findings

The findings of the literature study show that incorporating circularity and adaptability is possible through 10 design and operation determinants, namely configuration flexibility, product dismantlability, asset multi-usability, design regularity, functional convertibility, material reversibility, building maintainability, resource recovery, volume scalability, and asset refit-ability. The study concludes that considering the defined determinants in a holistic manner could simultaneously facilitate: building resilience to contextual changes, creation of asset value, and elimination of waste generation.

Originality/value

This paper expands the relevant bodies of literature by providing a novel way of perceiving building adaptability, incorporating circularity. The practical value of this paper lies in the discussion of potential strategies that can be proactively or reactively employed to operationalise circular building adaptability.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 6
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 8 May 2024

Minghao Wang, Ming Cong, Yu Du, Huageng Zhong and Dong Liu

To make the robot that have real autonomous ability is always the goal of mobile robot research. For mobile robots, simultaneous localization and mapping (SLAM) research is no…

Abstract

Purpose

To make the robot that have real autonomous ability is always the goal of mobile robot research. For mobile robots, simultaneous localization and mapping (SLAM) research is no longer satisfied with enabling robots to build maps by remote control, more needs will focus on the autonomous exploration of unknown areas, which refer to the low light, complex spatial features and a series of unstructured environment, lick underground special space (dark and multiintersection). This study aims to propose a novel robot structure with mapping and autonomous exploration algorithms. The experiment proves the detection ability of the robot.

Design/methodology/approach

A small bio-inspired mobile robot suitable for underground special space (dark and multiintersection) is designed, and the control system is set up based on STM32 and Jetson Nano. The robot is equipped with double laser sensor and Ackerman chassis structure, which can adapt to the practical requirements of exploration in underground special space. Based on the graph optimization SLAM method, an optimization method for map construction is proposed. The Iterative Closest Point (ICP) algorithm is used to match two frames of laser to recalculate the relative pose of the robot, which improves the sensor utilization rate of the robot in underground space and also increase the synchronous positioning accuracy. Moreover, based on boundary cells and rapidly-exploring random tree (RRT) algorithm, a new Bio-RRT method for robot autonomous exploration is proposed in addition.

Findings

According to the experimental results, it can be seen that the upgraded SLAM method proposed in this paper achieves better results in map construction. At the same time, the algorithm presents good real-time performance as well as high accuracy and strong maintainability, particularly it can update the map continuously with the passing of time and ensure the positioning accuracy in the process of map updating. The Bio-RRT method fused with the firing excitation mechanism of boundary cells has a more purposeful random tree growth. The number of random tree expansion nodes is less, and the amount of information to be processed is reduced, which leads to the path planning time shorter and the efficiency higher. In addition, the target bias makes the random tree grow directly toward the target point with a certain probability, and the obtained path nodes are basically distributed on or on both sides of the line between the initial point and the target point, which makes the path length shorter and reduces the moving cost of the mobile robot. The final experimental results demonstrate that the proposed upgraded SLAM and Bio-RRT methods can better complete the underground special space exploration task.

Originality/value

Based on the background of robot autonomous exploration in underground special space, a new bio-inspired mobile robot structure with mapping and autonomous exploration algorithm is proposed in this paper. The robot structure is constructed, and the perceptual unit, control unit, driving unit and communication unit are described in detail. The robot can satisfy the practical requirements of exploring the underground dark and multiintersection space. Then, the upgraded graph optimization laser SLAM algorithm and interframe matching optimization method are proposed in this paper. The Bio-RRT independent exploration method is finally proposed, which takes shorter time in equally open space and the search strategy for multiintersection space is more efficient. The experimental results demonstrate that the proposed upgrade SLAM and Bio-RRT methods can better complete the underground space exploration task.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 4 May 2021

Michael Y.L. Chew

This paper highlights a crucial public safety issue due to falling objects from tall residential buildings in Singapore. A systematic façade inspection regime and a system of…

4596

Abstract

Purpose

This paper highlights a crucial public safety issue due to falling objects from tall residential buildings in Singapore. A systematic façade inspection regime and a system of evaluation of severity for the detection and assessment of potential falling objects from tall buildings are presented.

Design/methodology/approach

The research uses qualitative case study approach with 450 tall residential buildings sampled for the study. The common materials, elements, components with high risk of falling objects, the nature and type of the falling, the critical factors affecting the falling, the respective level of severity, and the effectiveness of various diagnostic techniques and protocols, are summarised.

Findings

Façade for tall residential buildings in Singapore comprises mainly cementitious materials cast in situ or precast, with fixtures and architectural features, all of which have potential of falling. The common anomalies arising from each material and fixture/features are identified, the causes evaluated and their implications to future design, construction and maintenance analysed.

Originality/value

This study provides original and significant information to a crucial public safety issue, setting design and construction criteria that will serve as a benchmark for new and existing facades, applicable to all cities dominated by tall buildings. The paper presents original figures, checklists and guides as a basis for readers' consideration to use according to their respective unique conditions.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 6
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 4 January 2024

Nishant Kulshrestha, Saurabh Agrawal and Deep Shree

Spare Parts Management (SPM) and Industry 4.0 has proven their importance. However, employment of Industry 4.0 solutions for SPM is at emerging stage. To address the issue, this…

Abstract

Purpose

Spare Parts Management (SPM) and Industry 4.0 has proven their importance. However, employment of Industry 4.0 solutions for SPM is at emerging stage. To address the issue, this article is aimed toward a systematic literature review on SPM in Industry 4.0 era and identification of research gaps in the field with prospects.

Design/methodology/approach

Research articles were reviewed and analyzed through a content-based analysis using four step process model. The proposed framework consists of five categories such as Inventory Management, Types of Spares, Circularity based on 6Rs, Performance Indicators and Strategic and Operational. Based on these categories, a total of 118 research articles published between 1998 and 2022 were reviewed.

Findings

The technological solutions of Industry 4.0 concepts have provided numerous opportunities for SPM. Industry 4.0 hi-tech solutions can enhance agility, operational efficiency, quality of product and service, customer satisfaction, sustainability and profitability.

Research limitations/implications

The review of articles provides an integrated framework which recognizes implementation issues and challenges in the field. The proposed framework will support academia and practitioners toward implementation of technological solutions of Industry 4.0 in SPM. Implementation of Industry 4.0 in SPM may help in improving the triple bottom line aspect of sustainability which can make significant contribution to academia, practitioners and society.

Originality/value

The examination uncovered a scarcity of research in the intersection of SPM and Industry 4.0 concepts, suggesting a significant opportunity for additional investigative efforts.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Open Access
Article
Publication date: 31 July 2023

Jingrui Ge, Kristoffer Vandrup Sigsgaard, Bjørn Sørskot Andersen, Niels Henrik Mortensen, Julie Krogh Agergaard and Kasper Barslund Hansen

This paper proposes a progressive, multi-level framework for diagnosing maintenance performance: rapid performance health checks of key performance for different equipment groups…

Abstract

Purpose

This paper proposes a progressive, multi-level framework for diagnosing maintenance performance: rapid performance health checks of key performance for different equipment groups and end-to-end process diagnostics to further locate potential performance issues. A question-based performance evaluation approach is introduced to support the selection and derivation of case-specific indicators based on diagnostic aspects.

Design/methodology/approach

The case research method is used to develop the proposed framework. The generic parts of the framework are built on existing maintenance performance measurement theories through a literature review. In the case study, empirical maintenance data of 196 emergency shutdown valves (ESDVs) are collected over a two-year period to support the development and validation of the proposed approach.

Findings

To improve processes, companies need a separate performance measurement structure. This paper suggests a hierarchical model in four layers (objective, domain, aspect and performance measurement) to facilitate the selection and derivation of indicators, which could potentially reduce management complexity and help prioritize continuous performance improvement. Examples of new indicators are derived from a case study that includes 196 ESDVs at an offshore oil and gas production plant.

Originality/value

Methodological approaches to deriving various performance indicators have rarely been addressed in the maintenance field. The proposed diagnostic framework provides a structured way to identify and locate process performance issues by creating indicators that can bridge generic evaluation aspects and maintenance data. The framework is highly adaptive as data availability functions are used as inputs to generate indicators instead of passively filtering out non-applicable existing indicators.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

1 – 10 of 61