Search results

1 – 10 of over 1000
Article
Publication date: 7 March 2016

Mohammad Sadak Ali Khan, A. Suresh and N. Seetha Ramaiah

The purpose of this paper is to evaluate the performance of the semi-active fluid damper. It is recognized that the performance of such a damper depends upon the magnetic and…

Abstract

Purpose

The purpose of this paper is to evaluate the performance of the semi-active fluid damper. It is recognized that the performance of such a damper depends upon the magnetic and hydraulic circuit design. These dampers are generally used to control the vibrations in various applications in machine tools and robots. The present paper deals with the design of magneto-rheological (MR) damper. A finite element model is built to analyze and understand the performance of a 2D axi-symmetric MR damper. Various configurations of damper with modified piston ends are investigated. The input current to the coil and the piston velocity are varied to evaluate the resulting change in magnetic flux density (B), magnetic field (H), field dependent yield stress and magnetic force vectors. The simulation results of the various configurations of damper show that higher magnetic force is associated with plain piston ends. The performance of filleted piston ends is superior to that of other configurations for the same magnitude of coil current and piston velocity.

Design/methodology/approach

The damper design is done based on the fact that mechanical energy required for yielding of MR fluid increases with increase in applied magnetic field intensity. In the presence of magnetic field, the MR fluid follows Bingham’s plastic flow model, given by the equation τ = η γ•+τ y (H) τ > τ y . The above equation is used to design a device which works on the basis of MR fluid. The total pressure drop in the damper is evaluated by summing the viscous component and yield stress component which is approximated as ΔP = 12ηQL/g3W + CτyL/g, where the value of the parameter, C ranges from a minimum of 2 (for ΔPτ ΔPη less than approximately 1) to a maximum of 3 (for ΔPτ/ΔPη greater than approximately 100). To calculate the change in pressure on either side of the piston within the cylinder, yield stress is required which is obtained from the graph of yield stress vs magnetic field intensity provided by Lord Corporation for MR fluid −132 DG.

Findings

In this work, three different finite element models of MR damper piston are analyzed. The regression equations, contour plots and surface plots are obtained for different parameters. This study can be used as a reference for selecting the parameters for meeting different requirements. It is observed from the simulation of these models that the plain ends model gave optimum magnetic force and 2D flux lines with respect to damper input current. This is due to the fact that the plain ends model has more area when compared with that of other models. It is also observed that filleted ends model gave optimum magnetic flux density and yield stress. As there is reduced pole length in the filleted ends model, the MR fluid occupies vacant area, and hence results in increased flux density and yield shear stress. The filleted ends assist the formation of dense magnetic flux lines thereby increasing the flux density and yield stress. This implies that higher load can be carried by the filleted ends damper even with a smaller size.

Originality/value

This work is carried out to manufacture different capacities of the dampers. This can be applied as vibration controls.

Article
Publication date: 3 February 2021

S. Sarath and P. Sam Paul

A new cutting tool is always well-defined and sharp at the onset of the metal cutting process and gradually losses these properties as the machining process advances. Similarly…

Abstract

Purpose

A new cutting tool is always well-defined and sharp at the onset of the metal cutting process and gradually losses these properties as the machining process advances. Similarly, at the beginning of the machining process, amplitude of tool vibrations is considerably low and it increases gradually and peaks at the end of the service period of the cutting tool while machining. It is significant to provide a corresponding real-time varying damping to control this chatter, which directly influences accuracy and quality of productivity. This paper aims to review the literature related to the application of smart fluid to control vibration in metal cutting and also focused on the challenges involved in the implementation of active control system during machining process.

Design/methodology/approach

Smart dampers, which are used as semi-active and active dampers in metal cutting, were reviewed and the research studies carried out in the field of the magnetorheological (MR) damper were concentrated. In smart materials, MR fluids possess some disadvantages because of their sedimentation of iron particles, leakage and slow response time. To overcome these drawbacks, new MR materials such as MR foam, MR elastomers, MR gels and MR plastomers have been recommended and suggested. This review intents to throw light into available literature which exclusively deals with controlling chatter in metal cutting with the help of MR damping methods.

Findings

Using an MR damper popularly known for its semi-active damping characteristics is very adaptable and flexible in controlling chatter by providing damping to real-time amplitudes of tool vibration. In the past, many researchers have attempted to implement MR damper in metal cutting to control vibration and were successful. Various methods with the help of MR fluid are illustrated.

Research limitations/implications

A new cutting tool is always well-defined and sharp at the onset of metal cutting process and gradually losses these properties as the machining process advances. Similarly, at the beginning of the machining process, amplitude of tool vibrations is considerably low and it increases gradually and peaks at the end of service period of cutting tool while machining. Application of MR damper along with the working methodology in metal cutting is presented, challenges met are analyzed and a scope for development is reviewed.

Practical implications

This study provides corresponding real-time varying damping to control tool vibration which directly influences accuracy and quality of productivity. Using an MR damper popularly known for its semi-active damping characteristics is very adaptable and flexible in controlling chatter by providing damping to real-time amplitudes of tool vibration.

Social implications

This study attempts to implement smart damper in metal cutting to control vibrations.

Originality/value

It is significant to provide corresponding real-time varying damping to control tool vibration which directly influences accuracy and quality of productivity.

Details

World Journal of Engineering, vol. 18 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 August 2021

Sachin Negi, Ujjwal Sagar, Vijay Kumar Nautiyal and Neeraj Sharma

This paper aims to design and analyze a controlled magnetorheological damper-based ankle-foot prosthesis prototype.

Abstract

Purpose

This paper aims to design and analyze a controlled magnetorheological damper-based ankle-foot prosthesis prototype.

Design/methodology/approach

The ankle-foot prostheses prototype is proposed using the lightweight three dimensional (3 D)-printed parts, MR damper and digital servomotor. Initially, the computer-aided design (CAD) model of the prosthetic foot, leaf spring, retention spring and the various connecting parts required to connect the pylon and damper actuator assemblies are designed using CAD software. Later, the fused deposition modeling 3 D printer-based technique prints a prosthetic foot and other connecting parts using Acrylonitrile Butadiene Styrene filament. The prototype consists of two control parts: the first part controls the MR actuator that absorbs the impacts during walking. The second part is the control of the electric actuator intended to generate the dorsiflexion and plantar flexion movements. Finally, the prototype is tested on a transtibial amputee under the supervision of a prosthetist.

Findings

The ANalysis SYStems software-based analysis has shown that the prosthetic foot has a factor of safety values between 4.7 and 8.7 for heel strike, mid-swing and toe-off; hence, it is safe from mechanical failure. The designed MR damper-based ankle-foot prosthesis prototype is tested on an amputee for a level-ground walk; he felt comfortable compared to his passive prosthesis.

Originality/value

The design of an MR damper-based prosthesis prototype offers a better dynamic range for locomotion than passive prostheses. It reduces the injuries and provides relief to the transtibial amputees.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 September 2021

Ming Huang, Zhiqiang Zhang, Peizi Wei, Fei Liu and Youliang Ding

In order to make sure of the safety of a long-span suspension bridge under earthquake action, this paper aims to study the traveling wave effect of the bridge under multi-support…

127

Abstract

Purpose

In order to make sure of the safety of a long-span suspension bridge under earthquake action, this paper aims to study the traveling wave effect of the bridge under multi-support excitation and optimize the semi-active control schemes based on magneto-rheological (MR) dampers considering reference index as well as economical efficiency.

Design/methodology/approach

The finite element model of the long-span suspension bridge is established in MATLAB and ANSYS software, which includes different input currents and semi-active control conditions. Six apparent wave velocities are used to conduct non-linear time history analysis in order to consider the seismic response influence in primary members under traveling wave effect. The parameters α and β, which are key parameters of classical linear optimal control algorithm, are optimized and analyzed taking into account five different combinations to obtain the optimal control scheme.

Findings

When the apparent wave velocity is relatively small, the influence on the structural response is oscillatory. Along with the increase of the apparent wave velocity, the structural response is gradually approaching the response under uniform excitation. Semi-active control strategy based on MR dampers not only restrains the top displacement of main towers and relative displacement between towers and girders, but also affects the control effect of internal forces. For classical linear optimal control algorithm, the values of two parameters (α and β) are 100 and 8 × 10–6 considering the optimal control effect and economical efficiency.

Originality/value

The emphasis of this study is the traveling wave effect of the triple-tower suspension bridge under multi-support excitation. Meanwhile, the optimized parameters of semi-active control schemes using MR dampers have been obtained, providing relevant references in improving the seismic performance of three-tower suspension bridge.

Details

International Journal of Structural Integrity, vol. 12 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 29 July 2022

Ahmet Enes Arık and Boğaç Bilgiç

The purpose of this paper is to control a landing gear system with an oleo-pneumatic shock absorber with the fuzzy controller.

Abstract

Purpose

The purpose of this paper is to control a landing gear system with an oleo-pneumatic shock absorber with the fuzzy controller.

Design/methodology/approach

The landing gear system with an oleo-pneumatic shock absorber is modeled mathematically. A fuzzy controller is designed for reducing aircraft vibrations. Stroke velocity and main mass velocity parameters were used to decide variable gas pressure with the fuzzy controller.

Findings

The fuzzy controller, designed according to stroke velocity and main mass velocity, reduces aircraft vibrations by the landing impacts. The controller can provide strong robustness because it shows similar good performance for different descent speeds.

Research limitations/implications

This study was carried out through simulations in a computer environment and has not been experimentally tested in a real environment. In addition, signal and measurement delays are not taken into account. In future models, the effects of these signal delays can be added, and the controller can be tested on a real model.

Originality/value

In this study, to the best of the authors’ knowledge, for the first time, the gas pressure for the landing gear system using an oleo-pneumatic shock absorber was controlled by a fuzzy controller that adjusts the stroke velocity and the main mass velocity. Although the oleo-pneumatic shock absorber model contains high nonlinearities, the designed fuzzy controller gave successful results as robust.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 February 1997

Terry Ford

Presents shortened versions of a number of papers presented at the recent 22nd European Rotorcraft Forum held in Brighton, UK, whose theme was advances in research, development…

1986

Abstract

Presents shortened versions of a number of papers presented at the recent 22nd European Rotorcraft Forum held in Brighton, UK, whose theme was advances in research, development, design, manufacturing, testing and operation. Specific aircraft focused on are the EH 101 Merlin trials aircraft; the V‐22 Osprey tiltrotor; and the NH 90 helicopter. Discusses some of the developments on the more general subjects that were dealt with at the symposium: advanced transmission technology; metallic structures; composites; and aeroelasticity.

Details

Aircraft Engineering and Aerospace Technology, vol. 69 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 7 December 2023

Mohammed Jazeel, Sam Paul P., Lawrance Gunaraj and Hemalatha G.

Nowadays, in building structures, dampers are connected to the building structure to reduce the damages caused by seismicity in addition to enhancing structural stability, and to…

37

Abstract

Purpose

Nowadays, in building structures, dampers are connected to the building structure to reduce the damages caused by seismicity in addition to enhancing structural stability, and to connect dampers with the structure, joints are used. In this paper, three different configurations of double-lap joints were designed, developed and tested.

Design/methodology/approach

This paper aims to analyze three different categories of double-lap single-bolted joints that are used in connecting dampers with concrete and steel frame structures. These joints were designed and tested using computational, numerical and experimental methods. The studies were conducted to examine the reactions of the joints during loading conditions and to select the best joints for the structures that allow easy maintenance of the dampers and also withstand structural deformation when the damper is active during seismicity. Also, a computational analysis was performed on the designed joints integrated with the M25 concrete beam column junction. In this investigation, experimental study was carried out in addition to numerical and computational methods during cyclic load.

Findings

It was observed from the result that during deformation the double-base multiplate lap joint was suitable for buildings because the deformations on the joint base was negligible when compared with other joints. From the computational analysis, it was revealed that the three double joints while integrated with the beam column junction of M25 grade concrete structure, the damages induced by the double-base multiplate joint was negligible when compared with other two joints used in this study.

Originality/value

To prevent the collapse of the building during seismicity, dampers are used and further connecting the damper with the building structures, joints are used. In this paper, three double-lap joints in different design configuration were studied using computational, numerical and experimental techniques.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 21 August 2009

Fei Wang, Chengdong Wu, Xinthe Xu and Yunzhou Zhang

The purpose of this paper is to present a coordinated control strategy for stable walking of biped robot with heterogeneous legs (BRHL), which consists of artificial leg (AL) and…

Abstract

Purpose

The purpose of this paper is to present a coordinated control strategy for stable walking of biped robot with heterogeneous legs (BRHL), which consists of artificial leg (AL) and intelligent bionic leg (IBL).

Design/methodology/approach

The original concentrated control in common biped robot system is replaced by a master‐slave dual‐leg coordinated control. P‐type open/closed‐loop iterative learning control is used to realize the time‐varying gait tracking for IBL to AL.

Findings

The new control architecture can simplify gait planning scheme of BRHL system with complicated closed‐chain mechanism and mixed driving mode.

Research limitations/implications

Designing and constructing a suitable magneto‐rheological damper can greatly improve the control performance of IBL.

Practical implications

Master‐slave coordination strategy is suitable for BRHL stable walking control.

Originality/value

The concepts and methods of dual‐leg coordination have not been explicitly proposed in single biped robot control research before. Master‐slave coordinated control strategy is suitable for complicated BRHL.

Details

Industrial Robot: An International Journal, vol. 36 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 June 2020

Mohd Sabirin Rahmat, Khisbullah Hudha, Zulkiffli Abd Kadir, Noor Hafizah Amer, Muhammad Luqman Hakim Abd Rahman and Shohaimi Abdullah

The objective of this paper is to develop a fast modelling technique for predicting magneto-rheological fluid damper behaviour under impact loading applications.

Abstract

Purpose

The objective of this paper is to develop a fast modelling technique for predicting magneto-rheological fluid damper behaviour under impact loading applications.

Design/methodology/approach

The adaptive neuro-fuzzy inference system (ANFIS) technique was adopted to predict the behaviour of a magneto-rheological fluid (MRF) damper through experimental characterisation data. In this study, an MRF damper manufactured by Lord Corporation was used for characterisation using an impact pendulum test rig. The experimental characterisation was carried out with various impact energies and constant input currents applied to the MRF damper.

Findings

This research provided a fast modelling technique with relatively less error in predicting MRF damper behaviour for the development of control strategies. Accordingly, the ANFIS model was able to predict MRF damper behaviour under impact loading and showed better performance than the modified Bouc–Wen model.

Research limitations/implications

This study only focused on modelling technique for a single type of MRF damper used for impact loading applications. It is possible for other applications, such as cyclic loading, random loadings and system identification, to be studied in future experiments.

Original/Value

Future researchers could apply the ANFIS model as an actuator model for the development of control strategies and analyse the control performance. The model also can be replicated in other industries with minor modifications to suit different needs.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Content available
Article
Publication date: 1 January 2006

77

Abstract

Details

Assembly Automation, vol. 26 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of over 1000