Search results

1 – 10 of 160
Article
Publication date: 9 April 2018

Xiaojing Wang, Guojia Man and Mengjian Zhang

Internal leakage is one of the key factors that influence the super-low speed performance of continuous rotary electro-hydraulic servo motor. Therefore, this paper aims to study…

Abstract

Purpose

Internal leakage is one of the key factors that influence the super-low speed performance of continuous rotary electro-hydraulic servo motor. Therefore, this paper aims to study the change rule of internal leakage for improving the low speed performance of motor.

Design/methodology/approach

The mathematical models of internal leakage of continuous rotary electro-hydraulic servo motor were established, and according to the working principle of the motor, the 3D models of internal leakage location were established. Simulation analysis was implemented on the continuous rotary electro-hydraulic servo motor by the finite element analysis software ANSYS based on the fluid-structure interaction theory.

Findings

The results show the deformation of motor’s key parts and the changing rule of internal leakage. The effect of the leakage to the low speed performance of electro-hydraulic servo motor was analyzed, and at the same time, the motor’s leakage experiment was also conducted to verify the validity of simulation results.

Originality/value

This paper lays the foundation for improving the low speed performance of motor.

Details

Industrial Lubrication and Tribology, vol. 70 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 August 2017

Guoteng Zhang, Zhenyu Jiang, Yueyang Li, Hui Chai, Teng Chen and Yibin Li

Legged robots are inevitably to interact with the environment while they are moving. This paper aims to properly handle these interactions. It works to actively control the joint…

Abstract

Purpose

Legged robots are inevitably to interact with the environment while they are moving. This paper aims to properly handle these interactions. It works to actively control the joint torques of a hydraulic-actuated leg prototype and achieve compliant motion of the leg.

Design/methodology/approach

This work focuses on the modelling and controlling of a hydraulic-actuated robot leg prototype. First, the design and kinematics of the leg prototype is introduced. Then the linearlized model for the hydraulic actuator is built, and a model-based leg joint torque controller is presented. Furthermore, the virtual model controller is implemented on the prototype leg to achieve active compliance of the leg. Effectiveness of the controllers are validated through the experiments on the physical platform as well as the results from simulations.

Findings

The hydraulic joint torque controller presented in this paper shows good torque tracking performance. And the actively compliant leg successfully emulates the performance of virtual passive components under dynamic situations.

Originality/value

The main contribution of this paper is that it proposed a model-based active compliance controller for the hydraulic-actuated robot leg. It will be helpful for those robots that aim to achieve versatile and safe motions.

Details

Assembly Automation, vol. 37 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 7 June 2023

Bingwei Gao, Wei Zhang, Lintao Zheng and Hongjian Zhao

The purpose of this paper is to design a third-order linear active disturbance rejection controller (LADRC) to improve the response characteristics and robustness of the…

Abstract

Purpose

The purpose of this paper is to design a third-order linear active disturbance rejection controller (LADRC) to improve the response characteristics and robustness of the electrohydraulic servo system.

Design/methodology/approach

The LADRC was designed by replacing the nonlinear functions in each part of ADRC with linear functions or linear combinations, and the parameters of each part of the LADRC were connected with their bandwidth through the pole configuration method to reduce the required tuning parameters, and used an improved grey wolf optimizer to tune the LADRC parameters.

Findings

The anti-interference control simulation and experiment on the LADRC, ADRC and proportion integration differentiation (PID) were carried out to test the robustness, anti-interference ability and superiority of the designed LADRC. The simulation and experiment results showed that the LADRC control and anti-interference control had excellent performance, and because of its simple structure and fewer parameters, LADRC was easier to implement and had a better control effect and anti-interference.

Originality/value

For the problems of parameter perturbation, unknown interference and inaccurate model in the electrohydraulic position servo system, the designed third-order LADRC has good tracking accuracy and anti-interference, has few parameters and is conducive to promotion.

Details

Robotic Intelligence and Automation, vol. 43 no. 3
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 5 February 2018

Erming Ding, Fangwei Xie, Heng Dai, Qingsong Gao, Jin Zhang, Yixian Feng and Hongtuo Liu

In order to improve the ride comfort of vehicle suspension, this paper first proposed a shock absorber with four-stage adjustable damping forces. The purpose of this paper is to…

Abstract

Purpose

In order to improve the ride comfort of vehicle suspension, this paper first proposed a shock absorber with four-stage adjustable damping forces. The purpose of this paper is to validate its modeling and characteristics, indicator diagrams and velocity diagrams, which are the main research points.

Design/methodology/approach

In order to validate the fluid flow modeling, a series of mathematical modeling is established and solved by using Matlab/Simulink. An experiment rig based on electro-hydraulic loading servo system is designed to test the prototype. Finally, indicator diagram and velocity diagram are obtained and compared both in simulation and experiments.

Findings

Results indicate that at the same damping position, damping force will increase with the rise of rod’s velocity: if the rod’s velocity is fixed, the damping force changes apparently by altering the damping position. The shock absorber is softest at damping position 1, and it is hardest at damping position 4; although there is no any badly empty stroke and skewness in indicator diagram by simulation, a temporary empty stroke happens at maximum displacement of piston rob, both in rebound and compression strokes.

Research limitations/implications

Compared with results of the simulation and experiments, the design of a four-stage damping adjustable shock absorber (FDASA) is validated correctly in application, and may improve the overall dynamic performance of vehicle.

Originality/value

This paper is mainly focused on the design and testing of an FDASA, which may obtain four-stages damping characteristics, that totally has a vital importance to improve the performance of vehicle suspension.

Details

International Journal of Structural Integrity, vol. 9 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 11 March 2014

Guojun Liu, Zhiyong Qu, Xiaochu Liu and Junwei Han

Sinusoidal signals are often used as the inputs of the six degree of freedom (DOF) motion simulator platforms. The purpose of this paper is to propose a fuzzy incremental…

Abstract

Purpose

Sinusoidal signals are often used as the inputs of the six degree of freedom (DOF) motion simulator platforms. The purpose of this paper is to propose a fuzzy incremental controller (FIC) to improve sinusoidal signal tracking performances of an electrohydraulic Gough-Stewart platform (GSP).

Design/methodology/approach

An FIC is proposed to control an electrohydraulic GSP without any model parameters. The FIC output can be self-organized by only using the hydraulic actuator position information. The control rules are determined by a systematic deterministic method.

Findings

Experimental results show that the proposed FIC is valid and can achieve better tracking performances compared with classical PID controller and a decoupling controller (a model-based controller).

Originality/value

An FIC using a systematic deterministic rule-base determination method is proposed to improve sinusoidal signal tracking performances of electrohydraulic GSP.

Details

Industrial Robot: An International Journal, vol. 41 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 August 2019

Waheed Ur Rehman, Jiang Guiyun, Luo Yuan Xin, Wang Yongqin, Nadeem Iqbal, Shafiq UrRehman and Shamsa Bibi

This paper’s aim is modeling and simulation of an advanced controller design for a novel mechatronics system that consists of a hydrostatic journal bearing with servo control. The…

Abstract

Purpose

This paper’s aim is modeling and simulation of an advanced controller design for a novel mechatronics system that consists of a hydrostatic journal bearing with servo control. The proposed mechatronic system has more worth in tribology applications as compared to the traditional hydrostatic bearing which has limited efficiency and poor performance because of lower stiffness and load-carrying capacity. The proposed mechatronic system takes advantage of active lubrication to improve stiffness, rotor’s stability and load-carrying capacity.

Design/methodology/approach

The current work proposes extended state observer-based controller to control the active lubrication for hydrostatic journal bearing. The advantage of using observer is to estimate unknown state variables and lumped effects because of unmodeled dynamics, model uncertainties, and unknown external disturbances. The effectiveness of the proposed mechatronic system is checked against the traditional hydrostatic bearing.

Findings

Proposed mechatronics active hydrostatic journal bearing system is checked against traditional hydrostatic journal bearing. It is found that novel active hydrostatic journal bearing with servo control has good tribology performance factors such as stiffness, less rotor vibration, no wear and friction under starting conditions and high load-carrying capacity under different conditions of spindle speed, temperature, initial oil pressure and external disturbance. The result shows that proposed mechatronics system has more worth in rotary tribology applications.

Originality/value

The current manuscript designs a novel active hydrostatic journal bearing system with servo control. The mathematical model has advantages in term of estimating unknown state variables and lumped effects because of unmodeled dynamics, model uncertainties and unknown external disturbances. The result shows improvement in dynamic characteristics of a hydrostatic journal bearing under different dynamic conditions.

Details

Industrial Lubrication and Tribology, vol. 71 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 December 1966

P.J. Maltby

THE continuing development of aircraft operational concepts has in recent years resulted in the emergence of a variety of flight control functions which are essential to the…

Abstract

THE continuing development of aircraft operational concepts has in recent years resulted in the emergence of a variety of flight control functions which are essential to the safety of the aircraft and which moreover have to be performed automatically, the task being either too difficult for the human pilot, or at least so difficult as to command so much of his attention that his ability to carry out other functions is impaired. Among these functions may be instanced automatic landing, autostabilisation of V.T.O.L. aircraft in the hovering flight mode, the autostabilisation of an aircraft in some part of the flight regime in which its own natural stability is negative, and the autopiloting of aircraft operating at extremely low relative altitudes, to avoid collision with the terrain.

Details

Aircraft Engineering and Aerospace Technology, vol. 38 no. 12
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 December 1996

Brian W. Rooks

Presents a case study of Oilgear Towler, supplier of one of the most sophisticated electro‐hydraulic control systems for a Eumuco Hasenclever radial forging machine. One of the…

Abstract

Presents a case study of Oilgear Towler, supplier of one of the most sophisticated electro‐hydraulic control systems for a Eumuco Hasenclever radial forging machine. One of the key elements of the system is the control of two synchronized manipulators and four forging rams.

Details

Industrial Robot: An International Journal, vol. 23 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 September 2019

Xingyuan Wang, Zhifeng Lou, Xiaodong Wang, Yue Wang, Xiupeng Hao and Zhize Wang

The purpose of this paper is to design an automatic press-fit instrument to realize precision assembly and connection quality assessment of a small interference fitting parts…

Abstract

Purpose

The purpose of this paper is to design an automatic press-fit instrument to realize precision assembly and connection quality assessment of a small interference fitting parts, armature.

Design/methodology/approach

In this paper, an automatic press-fit instrument was developed for the technical problems of reliable clamping and positioning of the armature, automatic measurement and adjustment of the attitude and evaluation of the connection quality. To compensate for the installation error of the equipment, corresponding calibration method was proposed for each module of the instrument. Assembly strategies of axial displacement and perpendicularity were also proposed to ensure the assembly accuracy. A theoretical model was built to calculate the resistant force generated by the non-contact regions and then combined with the thick-walled cylinder theory to predict the press-fit curve.

Findings

The calibration method and assembly strategy proposed in this paper enable the press-fit instrument to achieve good alignment and assembly accuracy. A reasonable range of press-fit curve obtained from theoretical model can achieve the connection quality assessment.

Practical implications

This instrument has been used in an armature assembly project. The practical results show that this instrument can assemble the armature components with complex structures automatically, accurately, in high-efficiency and in high quality.

Originality/value

This paper provides a technical method to improve the assembly quality of small precision interference fitting parts and provides certain methodological guidelines for precision peg-in-hole assembly.

Details

Assembly Automation, vol. 39 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 14 October 2013

Guojun Liu, Zhiyong Qu, Junwei Han and Xiaochu Liu

– The purpose of this paper is to present systematic optimal design procedures for the Gough-Stewart platforms used as engineering motion simulators.

Abstract

Purpose

The purpose of this paper is to present systematic optimal design procedures for the Gough-Stewart platforms used as engineering motion simulators.

Design/methodology/approach

Three systematic optimal design procedures are proposed to solve the engineering design problems for the Gough-Stewart platform used as motion simulators. In these systematic optimal design procedures, two contradicting design optimality criteria with good representations of performances of the Gough-Stewart platforms are chosen as the objective functions. In addition, the two objective function optimization problems are solved by using the multi-objective evolutionary algorithms.

Findings

In the systematic optimal design procedures, multiple compromised design solutions are found by using Elitist Non-Dominated Sorting Genetic Algorithm version II in the primary design stage, and many candidates can be used in the secondary design stage for higher decisions. Two higher decision methods have been presented to choose the final solutions.

Originality/value

This paper proposes three systematic optimal design procedures to solve the practical design problems of the Gough-Stewart platforms used as motion simulators, which are very important for the engineering designers.

Details

Industrial Robot: An International Journal, vol. 40 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 160