Search results

1 – 10 of 299
Open Access
Article
Publication date: 4 April 2024

Yanmin Zhou, Zheng Yan, Ye Yang, Zhipeng Wang, Ping Lu, Philip F. Yuan and Bin He

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing…

Abstract

Purpose

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing system is essential for intelligent robots with various types of sensors. To mimic human-like abilities, sensors similar to human perception capabilities are indispensable. However, most research only concentrated on analyzing literature on single-modal sensors and their robotics application.

Design/methodology/approach

This study presents a systematic review of five bioinspired senses, especially considering a brief introduction of multimodal sensing applications and predicting current trends and future directions of this field, which may have continuous enlightenments.

Findings

This review shows that bioinspired sensors can enable robots to better understand the environment, and multiple sensor combinations can support the robot’s ability to behave intelligently.

Originality/value

The review starts with a brief survey of the biological sensing mechanisms of the five senses, which are followed by their bioinspired electronic counterparts. Their applications in the robots are then reviewed as another emphasis, covering the main application scopes of localization and navigation, objection identification, dexterous manipulation, compliant interaction and so on. Finally, the trends, difficulties and challenges of this research were discussed to help guide future research on intelligent robot sensors.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Content available
Article
Publication date: 13 November 2023

Sheuli Paul

This paper presents a survey of research into interactive robotic systems for the purpose of identifying the state of the art capabilities as well as the extant gaps in this…

1049

Abstract

Purpose

This paper presents a survey of research into interactive robotic systems for the purpose of identifying the state of the art capabilities as well as the extant gaps in this emerging field. Communication is multimodal. Multimodality is a representation of many modes chosen from rhetorical aspects for its communication potentials. The author seeks to define the available automation capabilities in communication using multimodalities that will support a proposed Interactive Robot System (IRS) as an AI mounted robotic platform to advance the speed and quality of military operational and tactical decision making.

Design/methodology/approach

This review will begin by presenting key developments in the robotic interaction field with the objective of identifying essential technological developments that set conditions for robotic platforms to function autonomously. After surveying the key aspects in Human Robot Interaction (HRI), Unmanned Autonomous System (UAS), visualization, Virtual Environment (VE) and prediction, the paper then proceeds to describe the gaps in the application areas that will require extension and integration to enable the prototyping of the IRS. A brief examination of other work in HRI-related fields concludes with a recapitulation of the IRS challenge that will set conditions for future success.

Findings

Using insights from a balanced cross section of sources from the government, academic, and commercial entities that contribute to HRI a multimodal IRS in military communication is introduced. Multimodal IRS (MIRS) in military communication has yet to be deployed.

Research limitations/implications

Multimodal robotic interface for the MIRS is an interdisciplinary endeavour. This is not realistic that one can comprehend all expert and related knowledge and skills to design and develop such multimodal interactive robotic interface. In this brief preliminary survey, the author has discussed extant AI, robotics, NLP, CV, VDM, and VE applications that is directly related to multimodal interaction. Each mode of this multimodal communication is an active research area. Multimodal human/military robot communication is the ultimate goal of this research.

Practical implications

A multimodal autonomous robot in military communication using speech, images, gestures, VST and VE has yet to be deployed. Autonomous multimodal communication is expected to open wider possibilities for all armed forces. Given the density of the land domain, the army is in a position to exploit the opportunities for human–machine teaming (HMT) exposure. Naval and air forces will adopt platform specific suites for specially selected operators to integrate with and leverage this emerging technology. The possession of a flexible communications means that readily adapts to virtual training will enhance planning and mission rehearsals tremendously.

Social implications

Interaction, perception, cognition and visualization based multimodal communication system is yet missing. Options to communicate, express and convey information in HMT setting with multiple options, suggestions and recommendations will certainly enhance military communication, strength, engagement, security, cognition, perception as well as the ability to act confidently for a successful mission.

Originality/value

The objective is to develop a multimodal autonomous interactive robot for military communications. This survey reports the state of the art, what exists and what is missing, what can be done and possibilities of extension that support the military in maintaining effective communication using multimodalities. There are some separate ongoing progresses, such as in machine-enabled speech, image recognition, tracking, visualizations for situational awareness, and virtual environments. At this time, there is no integrated approach for multimodal human robot interaction that proposes a flexible and agile communication. The report briefly introduces the research proposal about multimodal interactive robot in military communication.

Open Access
Article
Publication date: 2 February 2024

Sumathi Annamalai and Aditi Vasunandan

With Industry 4.0 and the extensive rise of smart technologies, we are seeing remarkable transformations in work practices and workplaces. Scholars report the phenomenal progress…

Abstract

Purpose

With Industry 4.0 and the extensive rise of smart technologies, we are seeing remarkable transformations in work practices and workplaces. Scholars report the phenomenal progress of smart technologies. At the same time, we can hear the rhetoric emphasising their potential threats. This study focusses on how and where intelligent machines are leveraged in the workplace, how humans co-working with intelligent machines are affected and what they believe can be done to mitigate the risks of the increased use of intelligent machines.

Design/methodology/approach

We conducted in-depth interviews with 15 respondents working in various leadership capacities associated with intelligent machines and technologies. Using NVivo, we coded and churned out the themes from the qualitative data collected.

Findings

This study shows how intelligent machines are leveraged across different industries, ranging from chatbots, intelligent sensors, cognitive systems and computer vision to the replica of the entire human being. They are used end-to-end in the value chain, increasing productivity, complementing human workers’ skillsets and augmenting decisions made by human workers. Human workers experience a blend of positive and negative emotions whilst co-working with intelligent machines, which influences their job satisfaction level. Organisations adopt several anticipatory strategies, like transforming into a learning organisation, identifying futuristic technologies and upskilling their human workers, regularly conducting social learning events and designing accelerated career paths to embrace intelligent technologies.

Originality/value

This study seeks to understand the emotional and practical implications of the use of intelligent machines by humans and how both entities can integrate and complement each other. These insights can help organisations and employees understand what future workplaces and practices will look like and how to remain relevant in this transformation.

Details

Central European Management Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2658-0845

Keywords

Article
Publication date: 2 April 2024

Jorge Furtado Falorca

The purpose of this paper is to report on the results of a study carried out to identify and analyse which potential subject areas may have impact on developments in the field of…

Abstract

Purpose

The purpose of this paper is to report on the results of a study carried out to identify and analyse which potential subject areas may have impact on developments in the field of building maintenance (BM). That is, it is intended to contribute to the integration of new approaches so that building maintenance management (BMM) becomes as automated, digital and intelligent or smartness as possible in the near future.

Design/methodology/approach

The research approach has resulted in a theory that is essentially based on a qualitative design. The route followed was a literature review, involving the collection, analysis and interpretation of carefully selected information, mostly from recently published records. The data assembled and the empirical experience itself made it possible to present a comprehensive viewpoint and some future outlooks.

Findings

Five thematic areas considered as potentially impactful for BM developments have been highlighted, analysed and generically labelled as thematic base words, which are monitoring, automation, digitalisation, intelligence and smart. It is believed that these may be aspects that will lay the groundwork for a much more advanced and integrated agenda, featured by a high-tech vision.

Originality/value

This is thought to be a different way of looking at the problem, as it addresses five current issues together. Trendy technological aspects are quite innovative and advantageous for BMM, providing opportunities not yet widely explored and boosting the paradigm shift.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 29 September 2023

Ata Jahangir Moshayedi, Nafiz Md Imtiaz Uddin, Xiaohong Zhang and Mehran Emadi Andani

This paper aims to explore and review the potential of robotic rehabilitation as a treatment approach for Alzheimer’s disease (AD) and its impact on the health and quality of life…

Abstract

Purpose

This paper aims to explore and review the potential of robotic rehabilitation as a treatment approach for Alzheimer’s disease (AD) and its impact on the health and quality of life of AD patients.

Design/methodology/approach

The present discourse endeavors to provide a comprehensive overview of extant scholarly inquiries that have examined the salience of inhibitory mechanisms vis-à-vis robotic interventions and their impact on patients with AD. Specifically, this review aims to explicate the contemporary state of affairs in this realm by furnishing a detailed explication of ongoing research endeavors. With the objective of elucidating the significance of inhibitory processes in robotic therapies for individuals with AD, this analysis offers a critical appraisal of extant literature that probes the intersection of cognitive mechanisms and assistive technologies. Through a meticulous analysis of diverse scholarly contributions, this review advances a nuanced understanding of the intricate interplay between inhibitory processes and robotic interventions in the context of AD.

Findings

According to the review papers, it appears that implementing robot-assisted rehabilitation can serve as a pragmatic and effective solution for enhancing the well-being and overall quality of life of patients and families engaged with AD. Besides, this new feature in the robotic area is anticipated to have a critical role in the success of this innovative approach.

Research limitations/implications

Due to the nascent nature of this cutting-edge technology and the constrained configuration of the mechanized entity in question, further protracted analysis is imperative to ascertain the advantages and drawbacks of robotic rehabilitation vis-à-vis individuals afflicted with Alzheimer’s ailment.

Social implications

The potential for robots to serve as indispensable assets in the provision of care for individuals afflicted with AD is significant; however, their efficacy and appropriateness for utilization by caregivers of AD patients must be subjected to further rigorous scrutiny.

Originality/value

This paper reviews the current robotic method and compares the current state of the art for the AD patient.

Details

Robotic Intelligence and Automation, vol. 43 no. 6
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 18 September 2023

Mingyu Wu, Che Fai Yeong, Eileen Lee Ming Su, William Holderbaum and Chenguang Yang

This paper aims to provide a comprehensive analysis of the state of the art in energy efficiency for autonomous mobile robots (AMRs), focusing on energy sources, consumption…

Abstract

Purpose

This paper aims to provide a comprehensive analysis of the state of the art in energy efficiency for autonomous mobile robots (AMRs), focusing on energy sources, consumption models, energy-efficient locomotion, hardware energy consumption, optimization in path planning and scheduling methods, and to suggest future research directions.

Design/methodology/approach

The systematic literature review (SLR) identified 244 papers for analysis. Research articles published from 2010 onwards were searched in databases including Google Scholar, ScienceDirect and Scopus using keywords and search criteria related to energy and power management in various robotic systems.

Findings

The review highlights the following key findings: batteries are the primary energy source for AMRs, with advances in battery management systems enhancing efficiency; hybrid models offer superior accuracy and robustness; locomotion contributes over 50% of a mobile robot’s total energy consumption, emphasizing the need for optimized control methods; factors such as the center of mass impact AMR energy consumption; path planning algorithms and scheduling methods are essential for energy optimization, with algorithm choice depending on specific requirements and constraints.

Research limitations/implications

The review concentrates on wheeled robots, excluding walking ones. Future work should improve consumption models, explore optimization methods, examine artificial intelligence/machine learning roles and assess energy efficiency trade-offs.

Originality/value

This paper provides a comprehensive analysis of energy efficiency in AMRs, highlighting the key findings from the SLR and suggests future research directions for further advancements in this field.

Details

Robotic Intelligence and Automation, vol. 43 no. 6
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 14 August 2023

Usman Tariq, Ranjit Joy, Sung-Heng Wu, Muhammad Arif Mahmood, Asad Waqar Malik and Frank Liou

This study aims to discuss the state-of-the-art digital factory (DF) development combining digital twins (DTs), sensing devices, laser additive manufacturing (LAM) and subtractive…

Abstract

Purpose

This study aims to discuss the state-of-the-art digital factory (DF) development combining digital twins (DTs), sensing devices, laser additive manufacturing (LAM) and subtractive manufacturing (SM) processes. The current shortcomings and outlook of the DF also have been highlighted. A DF is a state-of-the-art manufacturing facility that uses innovative technologies, including automation, artificial intelligence (AI), the Internet of Things, additive manufacturing (AM), SM, hybrid manufacturing (HM), sensors for real-time feedback and control, and a DT, to streamline and improve manufacturing operations.

Design/methodology/approach

This study presents a novel perspective on DF development using laser-based AM, SM, sensors and DTs. Recent developments in laser-based AM, SM, sensors and DTs have been compiled. This study has been developed using systematic reviews and meta-analyses (PRISMA) guidelines, discussing literature on the DTs for laser-based AM, particularly laser powder bed fusion and direct energy deposition, in-situ monitoring and control equipment, SM and HM. The principal goal of this study is to highlight the aspects of DF and its development using existing techniques.

Findings

A comprehensive literature review finds a substantial lack of complete techniques that incorporate cyber-physical systems, advanced data analytics, AI, standardized interoperability, human–machine cooperation and scalable adaptability. The suggested DF effectively fills this void by integrating cyber-physical system components, including DT, AM, SM and sensors into the manufacturing process. Using sophisticated data analytics and AI algorithms, the DF facilitates real-time data analysis, predictive maintenance, quality control and optimal resource allocation. In addition, the suggested DF ensures interoperability between diverse devices and systems by emphasizing standardized communication protocols and interfaces. The modular and adaptable architecture of the DF enables scalability and adaptation, allowing for rapid reaction to market conditions.

Originality/value

Based on the need of DF, this review presents a comprehensive approach to DF development using DTs, sensing devices, LAM and SM processes and provides current progress in this domain.

Book part
Publication date: 11 December 2023

Marwa Ben Ali and Ghada Boukettaya

For decades, the fast population growth worldwide was interrelated with the adopted rapid lifestyle behavior that relies on the extensive use of fossil fuels. This primary energy…

Abstract

For decades, the fast population growth worldwide was interrelated with the adopted rapid lifestyle behavior that relies on the extensive use of fossil fuels. This primary energy source has caused various urban and environmental impacts, such as global warming, air pollution, and so forth. Consequently, the identified circumstance issues have caused many health, social, and economic hindering effects for global citizens. It poses an existential threat to humanity and the global earth's ecosystem. The alarming levels of urban pollution emissions are putting enormous challenges to the related stakeholders (governments, businesses, investors, automakers, and citizens) to admit the need to decarbonize the global economy and reach sustainable development goals (SDGs) for cleaner and smarter cities across borders. As such, a vital part of a smart city is the transport sector. The road transport sector, precisely, is one of the primary consumers of fossil fuels that contribute to high carbon dioxide emissions. Accordingly, it is essential to adopt novel and sustainable urban transport solutions and promote the achievement of the SDG's eleventh goal for sustainable cities and communities. This chapter provides insight into the present global energy situation with particular attention to the road transport sector. Indeed, it highlights different emerging technologies for a sustainable and smart urban mobility future that will mitigate the environmental situation thanks to the development of drive and internet telecommunication technologies. Furthermore, we aim in this chapter to study the international progress of the transition project using the Political, Economic, Social, Technological, Environmental, and Legal (PESTEL) analysis methodology. This study is to pinpoint opportunities for project development and the challenges that set back its evolution.

Book part
Publication date: 4 December 2023

Mohammad Shamsu Uddin, Mehadi Hassan Tanvir, Md. Yasir Arafat and Jakia Sultana Jane

Industry 5.0 is referred to the subsequent industrialization. The ultimate goal of this transformation is to enable manufacturing solutions through collaboration with man and…

Abstract

Industry 5.0 is referred to the subsequent industrialization. The ultimate goal of this transformation is to enable manufacturing solutions through collaboration with man and machine which are more user-friendly and increase work quality in comparison to Industry 4.0. This will be accomplished through the consumption of the creative potential of human specialists in the creation of an industry with more efficient, clever, and precise machines. It is predicted that several exciting breakthroughs and apps will help Industry 5.0 in its plan to gain more productivity and supply personalized goods in an open system. On the other hand, Industry 5.0 has had a greater global and international renown from the very beginning of its existence. Machine learning (ML) technology, the Internet of Things (IoT), and big data will create a collaboration with people, robots, and other intelligent devices. Industry 5.0 continues to serve as an attractive driver for our society's workforce skills and young talent in search of purposeful professional lives. There are some challenges as well, such as working with advanced robots requires people to develop skills. People need to gain proper knowledge about collaboration with smart machines and the robot manufacturers industry. However, this ultimate overhaul is necessary for the industry to certify its reason as a solution provider for our society. These things will unquestionably ensure the long-term sustained development (SD) of any nation's economy.

Details

Fostering Sustainable Businesses in Emerging Economies
Type: Book
ISBN: 978-1-80455-640-5

Keywords

Article
Publication date: 23 August 2023

Guo Huafeng, Xiang Changcheng and Chen Shiqiang

This study aims to reduce data bias during human activity and increase the accuracy of activity recognition.

Abstract

Purpose

This study aims to reduce data bias during human activity and increase the accuracy of activity recognition.

Design/methodology/approach

A convolutional neural network and a bidirectional long short-term memory model are used to automatically capture feature information of time series from raw sensor data and use a self-attention mechanism to learn select potential relationships of essential time points. The proposed model has been evaluated on six publicly available data sets and verified that the performance is significantly improved by combining the self-attentive mechanism with deep convolutional networks and recursive layers.

Findings

The proposed method significantly improves accuracy over the state-of-the-art method between different data sets, demonstrating the superiority of the proposed method in intelligent sensor systems.

Originality/value

Using deep learning frameworks, especially activity recognition using self-attention mechanisms, greatly improves recognition accuracy.

Details

Sensor Review, vol. 43 no. 5/6
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 299