Search results

1 – 10 of 12
Article
Publication date: 11 June 2019

Muhammad Yahya, Jawad Ali Shah, Kushsairy Abdul Kadir, Zulkhairi M. Yusof, Sheroz Khan and Arif Warsi

Motion capture system (MoCap) has been used in measuring the human body segments in several applications including film special effects, health care, outer-space and under-water…

1484

Abstract

Purpose

Motion capture system (MoCap) has been used in measuring the human body segments in several applications including film special effects, health care, outer-space and under-water navigation systems, sea-water exploration pursuits, human machine interaction and learning software to help teachers of sign language. The purpose of this paper is to help the researchers to select specific MoCap system for various applications and the development of new algorithms related to upper limb motion.

Design/methodology/approach

This paper provides an overview of different sensors used in MoCap and techniques used for estimating human upper limb motion.

Findings

The existing MoCaps suffer from several issues depending on the type of MoCap used. These issues include drifting and placement of Inertial sensors, occlusion and jitters in Kinect, noise in electromyography signals and the requirement of a well-structured, calibrated environment and time-consuming task of placing markers in multiple camera systems.

Originality/value

This paper outlines the issues and challenges in MoCaps for measuring human upper limb motion and provides an overview on the techniques to overcome these issues and challenges.

Details

Sensor Review, vol. 39 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Content available
Article
Publication date: 1 February 2000

33

Abstract

Details

Pigment & Resin Technology, vol. 29 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 8 May 2023

Yumeng Hou, Fadel Mamar Seydou and Sarah Kenderdine

Despite being an authentic carrier of various cultural practices, the human body is often underutilised to access the knowledge of human body. Digital inventions today have…

Abstract

Purpose

Despite being an authentic carrier of various cultural practices, the human body is often underutilised to access the knowledge of human body. Digital inventions today have created new avenues to open up cultural data resources, yet mainly as apparatuses for well-annotated and object-based collections. Hence, there is a pressing need for empowering the representation of intangible expressions, particularly embodied knowledge within its cultural context. To address this issue, the authors propose to inspect the potential of machine learning methods to enhance archival knowledge interaction with intangible cultural heritage (ICH) materials.

Design/methodology/approach

This research adopts a novel approach by combining movement computing with knowledge-specific modelling to support retrieving through embodied cues, which is applied to a multimodal archive documenting the cultural heritage (CH) of Southern Chinese martial arts.

Findings

Through experimenting with a retrieval engine implemented using the Hong Kong Martial Arts Living Archive (HKMALA) datasets, this work validated the effectiveness of the developed approach in multimodal content retrieval and highlighted the potential for the multimodal's application in facilitating archival exploration and knowledge discoverability.

Originality/value

This work takes a knowledge-specific approach to invent an intelligent encoding approach through a deep-learning workflow. This article underlines that the convergence of algorithmic reckoning and content-centred design holds promise for transforming the paradigm of archival interaction, thereby augmenting knowledge transmission via more accessible CH materials.

Details

Journal of Documentation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0022-0418

Keywords

Content available
Article
Publication date: 1 August 2000

55

Abstract

Details

Pigment & Resin Technology, vol. 29 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Content available
Article
Publication date: 1 February 2000

60

Abstract

Details

Pigment & Resin Technology, vol. 29 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 31 May 2023

Ran Jiao, Yongfeng Rong, Mingjie Dong and Jianfeng Li

This paper aims to tackle the problem for a fully actuated unmanned aerial vehicle (FUAV) to perform physical interaction tasks in the Global Positioning System-denied…

Abstract

Purpose

This paper aims to tackle the problem for a fully actuated unmanned aerial vehicle (FUAV) to perform physical interaction tasks in the Global Positioning System-denied environments without expensive motion capture system (like VICON) under disturbances.

Design/methodology/approach

A tether-based positioning system consisting of a universal joint, a tether-actuated absolute position encoder and an attitude sensor is designed to provide reliable position feedback for the FUAV. To handle the disturbances, including the tension force caused by the taut tether, model uncertainties and other external disturbances such as aerodynamic disturbance, a hybrid disturbance observer (HDO) combining the position-based method and momentum-based technology with force sensor feedback is designed for the system. In addition, an HDO-based impedance controller is built to allow the FUAV interacting with the environment and meanwhile rejecting the disturbances.

Findings

Experimental validations of the proposed control algorithm are implemented on a real FUAV with the result of nice disturbance rejection capability and physical interaction performance.

Originality/value

A cheap alternative to indoor positioning system is proposed, with which the FUAV is able to interact with external environment and meanwhile reject the disturbances under the help of proposed hybrid disturbance observer and the impedance controller.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 June 2013

Ala Al‐Fuqaha, Mohammed Elbes and Ammar Rayes

Outdoor localization is an important issue for many applications, such as autonomous mobile robotics and augmented reality. The purpose of this paper is to propose a budgeted…

Abstract

Purpose

Outdoor localization is an important issue for many applications, such as autonomous mobile robotics and augmented reality. The purpose of this paper is to propose a budgeted dynamic exclusion heuristic based on signal phase shifts from multiple base stations.

Design/methodology/approach

The authors also propose an outdoor localization technique based on the particle filter for data fusion and present an overview of a potential target application of the proposed outdoor localization approach for the blind and visually impaired (BVI).

Findings

The combination of multiple sensor data tends to overcome the drawbacks of using one sensor technology in the localization process.

Originality/value

The novelty of the proposed approach stems from its ability to fuse data collected from different sensor technologies to converge to more accurate position estimation.

Details

International Journal of Pervasive Computing and Communications, vol. 9 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Open Access
Article
Publication date: 22 August 2023

Mahesh Babu Purushothaman and Kasun Moolika Gedara

This pragmatic research paper aims to unravel the smart vision-based method (SVBM), an AI program to correlate the computer vision (recorded and live videos using mobile and…

1323

Abstract

Purpose

This pragmatic research paper aims to unravel the smart vision-based method (SVBM), an AI program to correlate the computer vision (recorded and live videos using mobile and embedded cameras) that aids in manual lifting human pose deduction, analysis and training in the construction sector.

Design/methodology/approach

Using a pragmatic approach combined with the literature review, this study discusses the SVBM. The research method includes a literature review followed by a pragmatic approach and lab validation of the acquired data. Adopting the practical approach, the authors of this article developed an SVBM, an AI program to correlate computer vision (recorded and live videos using mobile and embedded cameras).

Findings

Results show that SVBM observes the relevant events without additional attachments to the human body and compares them with the standard axis to identify abnormal postures using mobile and other cameras. Angles of critical nodal points are projected through human pose detection and calculating body part movement angles using a novel software program and mobile application. The SVBM demonstrates its ability to data capture and analysis in real-time and offline using videos recorded earlier and is validated for program coding and results repeatability.

Research limitations/implications

Literature review methodology limitations include not keeping in phase with the most updated field knowledge. This limitation is offset by choosing the range for literature review within the last two decades. This literature review may not have captured all published articles because the restriction of database access and search was based only on English. Also, the authors may have omitted fruitful articles hiding in a less popular journal. These limitations are acknowledged. The critical limitation is that the trust, privacy and psychological issues are not addressed in SVBM, which is recognised. However, the benefits of SVBM naturally offset this limitation to being adopted practically.

Practical implications

The theoretical and practical implications include customised and individualistic prediction and preventing most posture-related hazardous behaviours before a critical injury happens. The theoretical implications include mimicking the human pose and lab-based analysis without attaching sensors that naturally alter the working poses. SVBM would help researchers develop more accurate data and theoretical models close to actuals.

Social implications

By using SVBM, the possibility of early deduction and prevention of musculoskeletal disorders is high; the social implications include the benefits of being a healthier society and health concerned construction sector.

Originality/value

Human pose detection, especially joint angle calculation in a work environment, is crucial to early deduction of muscoloskeletal disorders. Conventional digital technology-based methods to detect pose flaws focus on location information from wearables and laboratory-controlled motion sensors. For the first time, this paper presents novel computer vision (recorded and live videos using mobile and embedded cameras) and digital image-related deep learning methods without attachment to the human body for manual handling pose deduction and analysis of angles, neckline and torso line in an actual construction work environment.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 27 February 2020

Marco Bortolini, Maurizio Faccio, Francesco Gabriele Galizia, Mauro Gamberi and Francesco Pilati

Industry 4.0 emerged as the Fourth Industrial Revolution aiming at achieving higher levels of operational efficiency, productivity and automation. In this context, manual assembly…

Abstract

Purpose

Industry 4.0 emerged as the Fourth Industrial Revolution aiming at achieving higher levels of operational efficiency, productivity and automation. In this context, manual assembly systems are still characterized by high flexibility and low productivity, if compared to fully automated systems. Therefore, the purpose of this paper is to propose the design, engineering and testing of a prototypal adaptive automation assembly system, including greater levels of automation to complement the skills and capabilities of human workers.

Design/methodology/approach

A lab experimental field-test is presented comparing the assembly process of a full-scale industrial chiller with traditional and adaptive assembly system.

Findings

The analysis shows relevant benefits coming from the adoption of the adaptive automation assembly system. In particular, the main findings highlight improvements in the assembly cycle time and productivity, as well as reduction of the operator’s body movements.

Practical implications

The prototype is applied in an Italian mid-size industrial company, confirming its impact in terms of upgrades of the assembly system flexibility and productivity. Thus, the research study proposed in this paper provides valuable knowledge to support companies and industrial practitioners in the shift from traditional to advanced assembly systems matching current industrial and market features.

Originality/value

This paper expands the lacking research on adaptive automation assembly systems design proposing an innovative prototype able to real-time reconfigure its structure according to the product to work, e.g. work cycle, and the operator features.

Article
Publication date: 5 June 2009

Atsushi Shimada, Madoka Kanouchi, Daisaku Arita and Rin‐Ichiro Taniguchi

The purpose of this paper is to present an approach to improve the accuracy of estimating feature points of human body on a vision‐based motion capture system (MCS) by using the…

Abstract

Purpose

The purpose of this paper is to present an approach to improve the accuracy of estimating feature points of human body on a vision‐based motion capture system (MCS) by using the variable‐density self‐organizing map (VDSOM).

Design/methodology/approach

The VDSOM is a kind of self‐organizing map (SOM) and has an ability to learn training samples incrementally. The authors let VDSOM learn 3D feature points of human body when the MCS succeeded in estimating them correctly. On the other hand, one or more 3D feature point could not be estimated correctly, the VDSOM is used for the other purpose. The SOM including VDSOM has an ability to recall a part of weight vector which have learned in the learning process. This ability is used to recall correct patterns and complement such incorrect feature points by replacing such incorrect feature points with them.

Findings

Experimental results show that the approach is effective for estimation of human posture robustly compared with the other methods.

Originality/value

The proposed approach is interesting for the collaboration between an MCS and an incremental learning.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 2 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 10 of 12