Search results

1 – 7 of 7
Article
Publication date: 28 November 2023

M. Sankara Narayanan, P. Jeyadurga and S. Balamurali

The purpose of this paper is to design a modified version of the double sampling plan to handle the inspection processes requiring a minimum sample size to assure the median life…

Abstract

Purpose

The purpose of this paper is to design a modified version of the double sampling plan to handle the inspection processes requiring a minimum sample size to assure the median life for the products under the new Weibull–Pareto distribution. The economic design of the proposed plan is also considered to assure the product's lifetime with minimum cost.

Design/methodology/approach

The authors have developed an optimization model for obtaining the required plan parameters by solving simultaneously two non-linear inequalities and such inequalities have been formed based on the two points on the operating characteristic curve approach.

Findings

The results show that the average sample number, average total inspection and total inspection cost under the proposed plan are smaller than the same of a single sampling plan. This means that the proposed plan will be more efficient than a single sampling plan in reducing inspection effort and cost while providing the desired protection.

Originality/value

The proposed modified double sampling plan designed to assure the median life of the products under the new Weibull–Pareto distribution is not available in the literature. The proposed plan will be very useful in assuring the product median lifetime with minimum sample size as well as minimum cost in all the manufacturing industries.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 3 April 2024

Adhithya Sreeram and Jayaraman Kathirvelan

Artificial fruit ripening is hazardous to mankind. In the recent past, artificial fruit ripening is increasing gradually due to its commercial benefits. To discriminate the type…

Abstract

Purpose

Artificial fruit ripening is hazardous to mankind. In the recent past, artificial fruit ripening is increasing gradually due to its commercial benefits. To discriminate the type of fruit ripening involved at the vendors’ side, there is a great demand for on-sight ethylene detection in a nondestructive manner. Therefore, this study aims to deal with a comparison of various laboratory and portable methods developed so far with high-performance metrics to identify the ethylene detection at fruit ripening site.

Design/methodology/approach

This paper focuses on various types of technologies proposed up to date in ethylene detection, fabrication methods and signal conditioning circuits for ethylene detection in parts per million and parts per billion levels. The authors have already developed an infrared (IR) sensor to detect ethylene and also developed a lab-based setup belonging to the electrochemical sensing methods to detect ethylene for the fruit ripening application.

Findings

The authors have developed an electrochemical sensor based on multi-walled carbon nanotubes whose performance is relatively higher than the sensors that were previously reported in terms of material, sensitivity and selectivity. For identifying the best sensing technology for optimization of ethylene detection for fruit ripening discrimination process, authors have developed an IR-based ethylene sensor and also semiconducting metal-oxide ethylene sensor which are all compared with literature-based comparable parameters. This review paper mainly focuses on the potential possibilities for developing portable ethylene sensing devices for investigation applications.

Originality/value

The authors have elaborately discussed the new chemical and physical methods of ethylene detection and quantification from their own developed methods and also the key findings of the methods proposed by fellow researchers working on this field. The authors would like to declare that the extensive analysis carried out in this technical survey could be used for developing a cost-effective and high-performance portable ethylene sensing device for fruit ripening and discrimination applications.

Article
Publication date: 11 January 2024

Qiang Sun, Quantong Jiang, Siwei Wu, Chang Liu, Heng Tang, L. Song, Hao Shi, Jizhou Duan and BaoRong Hou

The purpose of this paper is to explore the effect of ZnO on the structure and properties of micro-arc oxidation (MAO) coating on rare earth magnesium alloy under large…

Abstract

Purpose

The purpose of this paper is to explore the effect of ZnO on the structure and properties of micro-arc oxidation (MAO) coating on rare earth magnesium alloy under large concentration gradient.

Design/methodology/approach

The macroscopic and microscopic morphology, thickness, surface roughness, chemical composition and structure of the coating were characterized by different characterization methods. The corrosion resistance of the film was studied by electrochemical and scanning Kelvin probe force microscopy. The results show that the addition of ZnO can significantly improve the compactness and corrosion resistance of the MAO coating, but the high concentration of ZnO will cause microcracks, which will reduce the corrosion resistance to a certain extent.

Findings

When the concentration of zinc oxide is 8 g/L, the compactness and corrosion resistance of the coating are the best, and the thickness of the coating is positively correlated with the concentration of ZnO.

Research limitations/implications

Too high concentration of ZnO reduces the performance of MAO coating.

Practical implications

The MAO coating prepared by adding ZnO has good corrosion resistance. Combined with organic coatings, it can be applied in corrosive marine environments, such as ship parts and hulls. To a certain extent, it can reduce the economic loss caused by corrosion.

Originality/value

The effect of ZnO on the corrosion resistance of MAO coating in electrolyte solution was studied systematically, and the conclusion was new to the common knowledge.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 2 February 2024

Ferhat Ceritbinmez and Ali Günen

This study aims to comparatively analyze the cut parts obtained as a result of cutting the Ni-based Inconel 625 alloy, which is widely used in the aerospace industry, with the…

Abstract

Purpose

This study aims to comparatively analyze the cut parts obtained as a result of cutting the Ni-based Inconel 625 alloy, which is widely used in the aerospace industry, with the wire electro-discharge machining (WEDM) and abrasive water jet machining (AWJM) methods in terms of macro- and microanalyses.

Design/methodology/approach

In this study, calipers, Mitutoyo SJ-210, Nikon SMZ 745 T, scanning electron microscope and energy dispersive X-ray were used to determine kerf, surface roughness and macro- and microanalyses.

Findings

Considering the applications in the turbine industry, it has been determined that the WEDM method is suitable to meet the standards for the machinability of Inconel 625 alloy. In contrast, the AWJM method does not meet the standards. Namely, while the kerf angle was formed because the hole entrance diameters of the holes obtained with AWJM were larger than the hole exit diameters, the equalization of the hole entry and exit dimensions, thanks to the perpendicularity and tension sensitivity of the wire electrode used in the holes drilled with WEDM ensured that the kerf angle was not formed.

Originality/value

It is known that the surface roughness of the parts used in the turbine industry is accepted at Ra = 0.8 µm. In this study, the average roughness value obtained from the successful drilling of Inconel 625 alloy with the WEDM method was 0.799 µm, and the kerf angle was obtained as zero. In the cuts made with the AWJM method, thermal effects such as debris, microcracks and melted materials were not observed; an average surface roughness of 2.293 µm and a kerf of 0.976° were obtained.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 15 February 2024

Xinyu Liu, Kun Ma, Ke Ji, Zhenxiang Chen and Bo Yang

Propaganda is a prevalent technique used in social media to intentionally express opinions or actions with the aim of manipulating or deceiving users. Existing methods for…

Abstract

Purpose

Propaganda is a prevalent technique used in social media to intentionally express opinions or actions with the aim of manipulating or deceiving users. Existing methods for propaganda detection primarily focus on capturing language features within its content. However, these methods tend to overlook the information presented within the external news environment from which propaganda news originated and spread. This news environment reflects recent mainstream media opinions and public attention and contains language characteristics of non-propaganda news. Therefore, the authors have proposed a graph-based multi-information integration network with an external news environment (abbreviated as G-MINE) for propaganda detection.

Design/methodology/approach

G-MINE is proposed to comprise four parts: textual information extraction module, external news environment perception module, multi-information integration module and classifier. Specifically, the external news environment perception module and multi-information integration module extract and integrate the popularity and novelty into the textual information and capture the high-order complementary information between them.

Findings

G-MINE achieves state-of-the-art performance on both the TSHP-17, Qprop and the PTC data sets, with an accuracy of 98.24%, 90.59% and 97.44%, respectively.

Originality/value

An external news environment perception module is proposed to capture the popularity and novelty information, and a multi-information integration module is proposed to effectively fuse them with the textual information.

Details

International Journal of Web Information Systems, vol. 20 no. 2
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 27 June 2023

Arsalan Safari, Vanesa Balicevac Al Ismail, Mahour Parast, Ismail Gölgeci and Shaligram Pokharel

This systematic literature review analyzes the academic literature to understand SC risk and resilience across different organizational sizes and industries. The academic…

Abstract

Purpose

This systematic literature review analyzes the academic literature to understand SC risk and resilience across different organizational sizes and industries. The academic literature has well discussed the causes of supply chain (SC) risk events, the impact of SC disruptions, and associated plans for SC resilience. However, the literature remains fragmented on the role of two fundamental elements in achieving SC resilience: the firm's size and the firm's industry as firms' contingent factors. Therefore, it is important to investigate and highlight SC resilience differences by size and industry type to establish more resilient firms.

Design/methodology/approach

Building upon the contingent resource-based view of the firm, the authors posit that organizational factors such as size and industry sector have important roles in developing organizational resilience capabilities. This systematic literature review and analysis is based on the structural and systematic analysis of high-ranked peer-reviewed journal papers from January 2000 to June 2021 collected through three global scientific databases (i.e. ProQuest, ScienceDirect, and Google Scholar) using relevant keywords.

Findings

This systematic literature review of 230 high-quality articles shows that SC risk events can be categorized into demand, supply, organizational, operational, environmental, and network/control risk events. This study suggests that the SC resilience plans developed by startups, small and mdium-sized enterprises (SMEs), and large organizations are not necessarily the same as those of large enterprises. While collaboration and networking and risk management are the most crucial resilience capabilities for all firms, applying lean and quality management principles and utilizing information technology are more crucial for SMEs. For large firms, knowledge management and contingency planning are more important.

Originality/value

This study provides a comprehensive review of the literature on SC resilience plans across different organizational sizes and industries, offering new insights into the nature and dynamics of startups', SMEs', and large enterprises' SC resilience in different industries. The study highlights the need for further investigation of SC risk and resilience for startups, SMEs, and different industries on a more detailed level using empirical data. This study’s findings have important implications for researchers and practitioners and guide the development of effective SC resilience strategies for different types of firms.

Details

The International Journal of Logistics Management, vol. 35 no. 2
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 18 January 2024

Uğur Kemiklioğlu, Sermet Demir and Caner Yüksel

Adhesively bonded joints are used in many fields, especially in the automotive, marine, aviation, defense and outdoor industries. Adhesive bonding offers advantages over…

Abstract

Purpose

Adhesively bonded joints are used in many fields, especially in the automotive, marine, aviation, defense and outdoor industries. Adhesive bonding offers advantages over traditional mechanical methods, including the ability to join diverse materials, even load distribution and efficient thermal-electrical insulation. This study aims to investigate the mechanical properties of adhesively bonded joints, focusing on adherends produced with auxetic and flat surfaces adhered with varying adhesive thicknesses.

Design/methodology/approach

The research uses three-dimensional (3D)-printed materials, polyethylene terephthalate glycol and polylactic acid, and two adhesive types with ductile and brittle properties for single lap joints, analyzing their mechanical performance through tensile testing. The adhesion region of one of these adherends was formed with a flat surface and the other with an auxetic surface. Adhesively bonded joints were produced with 0.2, 0.3 and 0.4 mm bonding thickness.

Findings

Results reveal that auxetic adherends exhibit higher strength compared to flat surfaces. Interestingly, the strength of ductile adhesives in auxetic bonded joints increases with adhesive thickness, while brittle adhesive strength decreases with thicker auxetic bonds. Moreover, the auxetic structure displays reduced elongation under comparable force.

Originality/value

The findings emphasize the intricate interplay between adhesive type, bonded surface configuration of adherend and bonding thickness, crucial for understanding the mechanical behavior of adhesively bonded joints in the context of 3D-printed materials.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Access

Year

Last 3 months (7)

Content type

Article (7)
1 – 7 of 7