Search results

1 – 2 of 2
Article
Publication date: 18 January 2016

Mengqi Yuan and David Bourell

The purpose of this paper is to improve the quality of additive manufactured optically translucent parts by investigating the manufacturing issues, analyzing lithophane production

Abstract

Purpose

The purpose of this paper is to improve the quality of additive manufactured optically translucent parts by investigating the manufacturing issues, analyzing lithophane production criteria and identifying the best translucent material and additive manufacturing (AM) technology.

Design/methodology/approach

Figured lithophanes were laser sintered on a 3D Systems SinterStation® HiQ™ with varying layer thickness and plate thickness. Laser sintered (LS) polyamide (PA) 12 blanks were cyanoacrylate infiltrated and polished. Optical properties and performance were compared with the original LS blanks. Lithophanes and blanks were manufactured using 3D systems stereo lithography apparatus (SLA)® Viper ™si2 station, and optical properties and lithophane performance were compared with the LS specimens.

Findings

When building in the XY plane, it is optimal to sinter with the minimum layer thickness (0.076 mm) and maximum plate thickness (5 mm). Cyanoacrylate infiltration and polishing assists in reducing the LS PA 12 plate surface roughness, but polishing does not affect the lithophane performance. The best LS candidate should have an absorption coefficient of 0.5/mm using a white light source. Improved resolution but reduced contrast was observed on stereolithography (SL) specimens compared to LS parts.

Research limitations/implications

Transmittance experiments were performed on three SL parts which was not sufficient for optical property calculation. Limited literature was found for new material exploration.

Originality/value

It is the first effort to study systematically quality improvement issues of LS PA optically translucent parts. A comparison is made of optical performance between parts made using LS and SL.

Details

Rapid Prototyping Journal, vol. 22 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 September 2019

Swapnil Vyavahare, Soham Teraiya, Deepak Panghal and Shailendra Kumar

Fused deposition modelling (FDM) is the most economical additive manufacturing technique. The purpose of this paper is to describe a detailed review of this technique. Total 211…

3984

Abstract

Purpose

Fused deposition modelling (FDM) is the most economical additive manufacturing technique. The purpose of this paper is to describe a detailed review of this technique. Total 211 research papers published during the past 26 years, that is, from the year 1994 to 2019 are critically reviewed. Based on the literature review, research gaps are identified and the scope for future work is discussed.

Design/methodology/approach

Literature review in the domain of FDM is categorized into five sections – (i) process parameter optimization, (ii) environmental factors affecting the quality of printed parts, (iii) post-production finishing techniques to improve quality of parts, (iv) numerical simulation of process and (iv) recent advances in FDM. Summary of major research work in FDM is presented in tabular form.

Findings

Based on literature review, research gaps are identified and scope of future work in FDM along with roadmap is discussed.

Research limitations/implications

In the present paper, literature related to chemical, electric and magnetic properties of FDM parts made up of various filament feedstock materials is not reviewed.

Originality/value

This is a comprehensive literature review in the domain of FDM focused on identifying the direction for future work to enhance the acceptability of FDM printed parts in industries.

Details

Rapid Prototyping Journal, vol. 26 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 2 of 2