Search results

1 – 2 of 2
Open Access
Book part
Publication date: 4 May 2018

Heriyanti, Lenny Marlinda, Rayandra Asyhar, Sutrisno and Marfizal

Purpose – This work aims to study the treatment of adsorbant on the increasing liquid hydrocarbon quality produced by pyrolysis low density polyethylene (LDPE) plastic waste at…

Abstract

Purpose – This work aims to study the treatment of adsorbant on the increasing liquid hydrocarbon quality produced by pyrolysis low density polyethylene (LDPE) plastic waste at low temperature. The hydrocarbon distribution, physicochemical properties and emission test were also studied due to its application in internal combustion engine. This research uses pure Calcium carbonate (CaCO3) and pure activated carbon as adsorbant, LDPE type clear plastic samples with control variable that is solar gas station.

Design/Methodology/Approach – LDPE plastic waste of 10 kg were vaporized in the thermal cracking batch reactor using LPG 12 kg as fuel at range temperature from 100 to 300°C and condensed into liquid hydrocarbon. Furthermore, this product was treated with the mixed CaCO3 and activated carbon as adsorbants to decrease contaminant material.

Findings – GC-MS identified the presence of carbon chain in the range of C6–C44 with 24.24% of hydrocarbon compounds in the liquid. They are similar to diesel (C6–C14). The 30% of liquid yields were found at operating temperature of 300°C. The calorific value of liquid was 46.021 MJ/Kg. This value was 5.07% higher than diesel as control.

Originality/Value – Hydrocarbon compounds in liquid produced by thermal cracking at a low temperature was similar to liquid from a catalytic process.

Details

Proceedings of MICoMS 2017
Type: Book
ISBN:

Keywords

Open Access
Book part
Publication date: 4 May 2018

Sulhatun, Rosdanelly Hasibuan, Hamidah Harahap, Iriani and Herman Fithra

Purpose – The purpose of this research is to study the process conditions that give best yield and expected compositions of liquid smoke products that result during the pyrolisis…

Abstract

Purpose – The purpose of this research is to study the process conditions that give best yield and expected compositions of liquid smoke products that result during the pyrolisis process relying on predetermined variables.

Design/Methodology/Approach – Pyrolisis process running times are varied, that is, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, and 6 hourly. Condensing temperature maintained remained 25–30 °C. Products identification was applied by using gas chromotography mass spectroscopy.

Findings – Based on the research output, it was concluded that process conditions which give maximum yield were achieved when using double unit condenser (DUC) and time optional four hours, and it provides maximum volume liquid smoke product, and compositions of pyrolisis products. The process also created seven components, namely nepthalene, propanoic acid, 3,7 nanodiena, 2 metilguaiakol, 2-metoksi 4-methyl phenol, 4 ethyl-2 metoksil phenol, oxybanzene. Applying DUC during condensation phase may increase condensing force thereafter obtaining resulted products between 200% and 300% rather than using single unit condenser (SUC).

Research Limitations/Implications – This research was conducted on a fixed batch reactor made of a metal plate with a thickness of 3.0 mm. It carries 200 kg in capacity. In this phase, the moisture of candlenut shells might be kept in 10–12.5% wt. Process temperature applied ranged within 350–500 °C.

Originality/Value – In addition the study increased the theorical of understanding about pyrolisis process and Improving the production of liquid smoke from candlenut shell by pyrolisis process using the method of vapor condensation (Double unit condensor).

Access

Only Open Access

Year

Content type

Book part (2)
1 – 2 of 2