Search results

1 – 10 of 10
Article
Publication date: 20 August 2024

Imran Shabir Chuhan, Jing Li, Muhammad Shafiq Ahmed, Muhammad Ashfaq Jamil and Ahsan Ejaz

The main purpose of this study is to analyze the heat transfer phenomena in a dynamically bulging enclosure filled with Cu-water nanofluid. This study examines the convective heat…

Abstract

Purpose

The main purpose of this study is to analyze the heat transfer phenomena in a dynamically bulging enclosure filled with Cu-water nanofluid. This study examines the convective heat transfer process induced by a bulging area considered a heat source, with the enclosure's side walls having a low temperature and top and bottom walls being treated as adiabatic. Various factors, such as the Rayleigh number (Ra), nanoparticle volume fraction, Darcy effects, Hartmann number (Ha) and effects of magnetic inclination, are analyzed for their impact on the flow behavior and temperature distribution.

Design/methodology/approach

The finite element method (FEM) is employed for simulating variations in flow and temperature after validating the results. Solving the non-linear partial differential equations while incorporating the modified Darcy number (10−3Da ≤ 10−1), Ra (103Ra ≤ 105) and Ha (0 ≤ Ha ≤ 100) as the dimensionless operational parameters.

Findings

This study demonstrates that in enclosures with dynamically positioned bulges filled with Cu-water nanofluid, heat transfer is significantly influenced by the bulge location and nanoparticle volume fraction, which alter flow and heat patterns. The varying impact of magnetic fields on heat transfer depends on the Rayleigh and Has.

Practical implications

The geometry configurations employed in this research have broad applications in various engineering disciplines, including heat exchangers, energy storage, biomedical systems and food processing.

Originality/value

This research provides insights into how different shapes of the heated bulging area impact the hydromagnetic convection of Cu-water nanofluid flow in a dynamically bulging-shaped porous system, encompassing curved surfaces and various multi-physical conditions.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 July 2024

Nahid Hasan and Sumon Saha

This study aims to investigate magnetohydrodynamic (MHD) conjugate pure mixed convection considering interior heat production and resistive heating inside a square closed/open…

Abstract

Purpose

This study aims to investigate magnetohydrodynamic (MHD) conjugate pure mixed convection considering interior heat production and resistive heating inside a square closed/open cavity featuring a rotating cylinder for aiding (clockwise) and opposing (counterclockwise) flow configurations. Moreover, the impacts of altering cylinder size and conductivity on the system’s overall performance to determine optimum conditions are examined in this investigation.

Design/methodology/approach

The closed chamber is differentially heated by keeping high and low temperatures at the vertical boundaries. In contrast, the open cavity has a heated left wall and an open right boundary. The Galerkin finite element method is used to solve the Navier–Stokes and the thermal energy equations, which construct the present study’s mathematical framework. Numerical simulations are conducted for the specified ranges of several controlling parameters: Reynolds (31.62 ≤ Re ≤ 1000), Grashof (103Gr ≤ 106) and Hartmann numbers (0 ≤ Ha ≤ 31.62), and volumetric heat generation coefficient (Δ = 0, 3).

Findings

When Gr, Re and Ha simultaneously increase, the average Nusselt number along the warmed boundary rises accordingly. Conversely, interior heat production lowers heat transmission within the computational domain, which is also monitored regarding mean fluid temperature, overall entropy production and thermal performance criterion. Finally, the open cavity confirms better thermal performance than the closed cavity.

Originality/value

Comprehending the impacts of the magnetic field, Joule heating, internal heat generation and enclosed or open boundary on pure MHD combined free-forced convective flow offers valuable understandings of temperature fluctuations, velocity propagations, heat transport and irretrievable energy loss in numerous engineering applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 September 2024

Paluru Sreedevi and P. Sudarsana Reddy

This paper aims to numerically examine the impact of gyrotactic microorganisms and radiation on heat transport features of magnetic nanoliquid within a closed cavity…

Abstract

Purpose

This paper aims to numerically examine the impact of gyrotactic microorganisms and radiation on heat transport features of magnetic nanoliquid within a closed cavity. Thermophoresis, chemical reaction and Brownian motion are also considered in flow geometry for the moment of nanoparticles.

Design/methodology/approach

Finite element method (FEM) was depleted to numerically approximate the temperature, momentum, concentration and microorganisms concentration of the nanoliquid. The present simulation was unsteady state, and the resulting transformed equations are simulated by FEM-based Mathematica algorithm.

Findings

It has been found that isotherm patterns get larger with increasing values of the magnetic field parameter. Additionally, numerical codes for rate of heat transport impedance inside the cavity with an increasing Brownian motion parameter values.

Originality/value

To the best of the authors’ knowledge, the research work carried out in this paper is new, and no part is copied from others’ works.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 September 2024

Khairunnahar Suchana and Md. Mamun Molla

The present numerical investigation examines the magnetohydrodynamic (MHD) double diffusion natural convection of power-law non-Newtonian nano-encapsulated phase change materials…

Abstract

Purpose

The present numerical investigation examines the magnetohydrodynamic (MHD) double diffusion natural convection of power-law non-Newtonian nano-encapsulated phase change materials (NEPCMs) in a trapezoidal cavity.

Design/methodology/approach

The governing Navier-Stokes, energy and concentration equations based on the Cartesian curvilinear coordinates are solved using the collocated grid arrangement’s finite volume method. The in-house FORTRAN code is validated with the different benchmark problems. The NEPCM nanoparticles consist of a core-shell structure with Phase Change Material (PCM) at the core. The enclosure, shaped as a trapezoidal hollow, features a warmed (Th) left wall and a cold (Tc) right wall. Various parameters are considered, including the power law index (0.6 ≤ n ≤ 1.4), Hartmann number (0 ≤ Ha ≤ 30), Rayleigh number (104Ra ≤ 105) and fixed variables such as buoyancy ratio (Br = 0.8), Prandtl number (Pr = 6.2), Lewis number (Le = 5), fusion temperature (Θf = 0.5) and volume fraction (ϕ = 0.04).

Findings

The findings indicate a decrease in local Nusselt (Nu) and Sherwood (Sh) numbers with increasing Hartmann numbers (Ha). Additionally, for a shear-thinning fluid (n = 0.6) results in the maximum local Nu and Sh values. As the Rayleigh number (Ra) increases from 104 to 105, the structured vortex in the streamline pattern is disturbed. Furthermore, for different Ra values, an increase in n from 0.6 to 1.4 leads to a 67.43% to 76.88% decrease in average Nu and a 70% to 77% decrease in average Sh.

Research limitations/implications

This research is for two-dimensioal laminar flow only.

Practical implications

PCMs represent a class of practical substances that behave as a function of temperature and have the innate ability to absorb, release and store heated energy in the form of hidden fusion enthalpy, or heat. They are valuable in these systems as they can store significant energy at a relatively constant temperature through their latent heat phase change.

Originality/value

As per the literature review and the authors’ understanding, an examination has never been conducted on MHD double diffusion natural convection of power-law non-Newtonian NEPCMs within a trapezoidal enclosure. The current work is innovative since it combines NEPCMs with the effect of magnetic field Double diffusion Natural Convection of power-law non-Newtonian NEPCMs in a Trapezoidal enclosure. This outcome can be used to improve thermal management in energy storage systems, increasing safety and effectiveness.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 August 2024

H. Thameem Basha, Hyunju Kim and Bongsoo Jang

Thermal energy storage systems use thermal energy to elevate the temperature of a storage substance, enabling the release of energy during a discharge cycle. The storage or…

Abstract

Purpose

Thermal energy storage systems use thermal energy to elevate the temperature of a storage substance, enabling the release of energy during a discharge cycle. The storage or retrieval of energy occurs through the heating or cooling of either a liquid or a solid, without undergoing a phase change, within a sensible heat storage system. In a sensible packed bed thermal energy storage system, the structure comprises porous media that form the packed solid material, while fluid occupies the voids. Thus, a cavity, partially filled with a fluid layer and partially with a saturated porous layer, has become important in the investigation of natural convection heat transfer, carrying significant relevance within thermal energy storage systems. Motivated by these insights, the current investigation delves into the convection heat transfer driven by buoyancy and entropy generation within a partially porous cavity that is differentially heated, vertically layered and filled with a hybrid nanofluid.

Design/methodology/approach

The investigation encompasses two distinct scenarios. In the first instance, the porous layer is positioned next to the heated wall, while the opposite region consists of a fluid layer. In the second case, the layers switch places, with the fluid layer adjacent to the heated wall. The system of equations for fluid and porous media, along with appropriate initial and boundary conditions, is addressed using the finite difference method. The Tiwari–Das model is used in this investigation, and the viscosity and thermal conductivity are determined using correlations specific to spherical nanoparticles.

Findings

Comprehensive numerical simulations have been performed, considering controlling factors such as the Darcy number, nanoparticle volume fraction, Rayleigh number, bottom slit position and Hartmann number. The visual representation of the numerical findings includes streamlines, isotherms and entropy lines, as well as plots illustrating average entropy generation and the average Nusselt number. These representations aim to provide insight into the influence of these parameters across a spectrum of scenarios.

Originality/value

The computational outcomes indicate that with an increase in the Darcy number, the addition of 2.5% magnetite nanoparticles to the GO nanofluid results in an enhanced heat transfer rate, showing increases of 0.567% in Case 1 and 3.894% in Case 2. Compared with Case 2, Case 1 exhibits a 59.90% enhancement in heat transfer within the enclosure. Positioning the porous layer next to the partially cooled wall significantly boosts the average total entropy production, showing a substantial increase of 11.36% at an elevated Rayleigh number value. Positioning the hot slit near the bottom wall leads to a reduction in total entropy generation by 33.20% compared to its placement at the center and by 33.32% in comparison to its proximity to the top wall.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 September 2024

Abdelhak Daiz, Rachid Hidki, Redouane Fares and Zouhair Charqui

The purpose of this study is to analyze the free convection phenomena arising from a temperature disparity between a cold circular cylinder and a heated corrugated cylinder.

Abstract

Purpose

The purpose of this study is to analyze the free convection phenomena arising from a temperature disparity between a cold circular cylinder and a heated corrugated cylinder.

Design/methodology/approach

Numerical simulations were used to analyze the convection patterns. The inner cylinder, made of a thermally conductive solid material, was heated through its inner surface, while the space between the cylinders was filled with air. The governing equations for velocity, pressure and temperature were solved using a Galerkin finite element method-based solver for partial differential equations.

Findings

The study explored various parameters affecting the dynamic and thermal structure of the flow, including the Rayleigh number (103 ≤ Ra ≤ 106), the number of corrugations of the inner cylinder (3 ≤ N ≤ 18), the thermal conductivity of the hollow cylinder (1 ≤ K ≤ 200) and the angle of inclination of the inner cylinder (0° ≤ φ ≤ 90°). Results indicated a notable sensitivity of flow intensity to changes in the Rayleigh number and the inner cylinder’s inclination angle φ. Particularly, for Ra = 106, the average heat transfer rate increased by 203% with a K ratio increment from 1 to 100 but decreased by 16.3% as the number of corrugations increased from 3 to 18.

Originality/value

This research contributes to understanding the complex interplay between geometry, thermal properties and flow dynamics in natural convection systems involving cylindrical geometries. The findings offer useful insights for improving the transfer of heat procedures in real-world situations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 August 2024

Muhammad Yousuf Rafiq, Ayesha Sabeen, Aqeel ur Rehman and Zaheer Abbas

The hybrid nanofluid flow due to a rotating disk has numerous applications, including centrifugal pumps, paper production, polymers dying, air filtration systems, automobile…

Abstract

Purpose

The hybrid nanofluid flow due to a rotating disk has numerous applications, including centrifugal pumps, paper production, polymers dying, air filtration systems, automobile cooling and solar collectors. This study aims to investigate the convective heat transport and magnetohydrodynamics (MHD) hybrid nanofluid flow past a stretchable rotating surface using the Yamada-Ota and Xue models with the impacts of heat generation and thermal radiation.

Design/methodology/approach

The carbon nanotubes such as single-wall carbon nanotubes and multi-wall carbon nanotubes are suspended in a base fluid like water to make the hybrid nanofluid. The problem’s governing partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. Then, the numerical solutions are found with a bvp4c function in MATLAB software. The impacts of pertinent parameters on the flow and temperature fields are depicted in tables and graphs.

Findings

Two solution branches are discovered in a certain range of unsteadiness parameters. The fluid temperature and the rate of heat transport are enhanced when the thermal radiation and heat generation effects are increased. The Yamada-Ota model has a higher temperature than the Xue model. Furthermore, it is observed that only the first solution remains stable when the stability analysis is implemented.

Originality/value

To the best of the authors’ knowledge, the results stated are original and new with the investigation of MHD hybrid nanofluid flow with convective heat transfer using the extended version of Yamada-Ota and Xue models. Moreover, the novelty of the present study is improved by taking the impacts of heat generation and thermal radiation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 September 2024

Madiha Ajmal, Rashid Mehmood, Noreen Sher Akbar and Taseer Muhammad

This study aims to focuse on the flow behavior of a specific nanofluid composed of blood-based iron oxide nanoparticles, combined with motile gyrotactic microorganisms, in a…

Abstract

Purpose

This study aims to focuse on the flow behavior of a specific nanofluid composed of blood-based iron oxide nanoparticles, combined with motile gyrotactic microorganisms, in a ciliated channel with electroosmosis.

Design/methodology/approach

This study applies a powerful mathematical model to examine the combined impacts of bio convection and electrokinetic forces on nanofluid flow. The presence of cilia, which are described as wave-like motions on the channel walls, promotes fluid propulsion, which improves mixing and mass transport. The velocity and dispersion of nanoparticles and microbes are modified by the inclusion of electroosmosis, which is stimulated by an applied electric field. This adds a significant level of complexity.

Findings

To ascertain their impact on flow characteristics, important factors such as bio convection Rayleigh number, Grashoff number, Peclet number and Lewis number are varied. The results demonstrate that while the gyrotactic activity of microorganisms contributes to the stability and homogeneity of the nanofluid distribution, electroosmotic forces significantly enhance fluid mixing and nanoparticle dispersion. This thorough study clarifies how to take advantage of electroosmosis and bio convection in ciliated micro channels to optimize nanofluid-based biomedical applications, such as targeted drug administration and improved diagnostic processes.

Originality/value

First paper discussed “Numerical Computation of Cilia Transport of Prandtl Nanofluid (Blood-Fe3O4) Enhancing Convective Heat Transfer along Micro Organisms under Electroosmotic effects in Wavy Capillaries”.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 August 2024

Umar Farooq, Tao Liu, Ahmed Jan, Umer Farooq and Samina Majeed

In this study, we investigate the effects of an extended ternary hybrid Tiwari and Das nanofluid model on ethylene glycol flow, with a focus on heat transfer. Using the Cross…

Abstract

Purpose

In this study, we investigate the effects of an extended ternary hybrid Tiwari and Das nanofluid model on ethylene glycol flow, with a focus on heat transfer. Using the Cross non-Newtonian fluid model, we explore the heat transfer characteristics of this unique fluid in various applications such as pharmaceutical solvents, vaccine preservatives, and medical imaging techniques.

Design/methodology/approach

Our investigation reveals that the flow of this ternary hybrid nanofluid follows a laminar Cross model flow pattern, influenced by heat radiation and occurring around a stretched cylinder in a porous medium. We apply a non-similarity transformation to the nonlinear partial differential equations, converting them into non-dimensional PDEs. These equations are subsequently solved as ordinary differential equations (ODEs) using MATLAB’s bvp4c tools. In addition, the magnetic number in this study spans from 0 to 5, volume fraction of nanoparticles varies from 5% to 10%, and Prandtl number for EG as 204. This approach allows us to examine the impact of temperature on heat transfer and distribution within the fluid.

Findings

Graphical depictions illustrate the effects of parameters such as the Weissenberg number, porous parameter, Schmidt number, thermal conductivity parameter, Soret number, magnetic parameter, Eckert number, Lewis number, and Peclet number on velocity, temperature, concentration, and microorganism profiles. Our results highlight the significant influence of thermal radiation and ohmic heating on heat transmission, particularly in relation to magnetic and Darcy parameters. A higher Lewis number corresponds to faster heat diffusion compared to mass diffusion, while increases in the Soret number are associated with higher concentration profiles. Additionally, rapid temperature dissipation inhibits microbial development, reducing the microbial profile.

Originality/value

The numerical analysis of skin friction coefficients and Nusselt numbers in tabular form further validates our approach. Overall, our findings demonstrate the effectiveness of our numerical technique in providing a comprehensive understanding of flow and heat transfer processes in ternary hybrid nanofluids, offering valuable insights for various practical applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 9 September 2024

Muhammad Faisal, Iftikhar Ahmad, Qazi Zan-Ul-Abadin, Irfan Anjum Badruddin and Mohamed Hussien

This study aims to explore entropy evaluation in the bi-directional flow of Casson hybrid nanofluids within a stagnated domain, a topic of significant importance for optimizing…

Abstract

Purpose

This study aims to explore entropy evaluation in the bi-directional flow of Casson hybrid nanofluids within a stagnated domain, a topic of significant importance for optimizing thermal systems. The aim is to investigate the behavior of unsteady, magnetized and laminar flow using a parametric model based on the thermo-physical properties of alumina and copper nanoparticles.

Design/methodology/approach

The research uses boundary layer approximations and the Keller-box method to solve the derived ordinary differential equations, ensuring numerical accuracy through convergence and stability analysis. A comparison benchmark has been used to authenticate the accuracy of the numerical outcomes.

Findings

Results indicate that increasing the Casson fluid parameter (ranging from 0.1 to 1.0) reduces velocity, the Bejan number decreases with higher bidirectional flow parameter (ranging from 0.1 to 0.9) and the Nusselt number increases with higher nanoparticle concentrations (ranging from 1% to 4%).

Research limitations/implications

This study has limitations, including the assumption of laminar flow and the neglect of possible turbulent effects, which could be significant in practical applications.

Practical implications

The findings offer insights for optimizing thermal management systems, particularly in industries where precise control of heat transfer is crucial. The Keller-box simulation method proves to be effective in accurately predicting the behavior of such complex systems, and the entropy evaluation aids in assessing thermodynamic irreversibilities, which can enhance the efficiency of engineering designs.

Originality/value

These findings provide valuable insights into the thermal management of hybrid nanofluid systems, marking a novel contribution to the field.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 10