Search results

1 – 10 of 17
Open Access
Article
Publication date: 26 March 2024

Sergio de la Rosa, Pedro F. Mayuet, Cátia S. Silva, Álvaro M. Sampaio and Lucía Rodríguez-Parada

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour…

Abstract

Purpose

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour for their application in a methodology for the design and development of personalized elastic therapeutic products.

Design/methodology/approach

Lattice samples were designed and manufactured using extrusion-based additive manufacturing technologies. Mechanical tests were carried out on lattice samples for elasticity characterization purposes. The relationships between sample stiffness and key geometric and manufacturing variables were subsequently used in the case study on the design of a pressure cushion model for validation purposes. Differentiated areas were established according to patient’s pressure map to subsequently make a correlation between the patient’s pressure needs and lattice samples stiffness.

Findings

A substantial and wide variation in lattice compressive behaviour was found depending on the key study variables. The proposed methodology made it possible to efficiently identify and adjust the pressure of the different areas of the product to adapt them to the elastic needs of the patient. In this sense, the characterization lattice samples turned out to provide an effective and flexible response to the pressure requirements.

Originality/value

This study provides a generalized foundation of lattice structural design and adjustable stiffness in application of pressure cushions, which can be equally applied to other designs with similar purposes. The relevance and contribution of this work lie in the proposed methodology for the design of personalized therapeutic products based on the use of individual lattice structures that function as independent customizable cells.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 20 August 2024

Miguel Araya-Calvo, Antti Järvenpää, Timo Rautio, Johan Enrique Morales-Sanchez and Teodolito Guillen-Girón

This study compares the fatigue performance and biocompatibility of as-built and chemically etched Ti-6Al-4V alloys in TPMS-gyroid and stochastic structures fabricated via Powder…

Abstract

Purpose

This study compares the fatigue performance and biocompatibility of as-built and chemically etched Ti-6Al-4V alloys in TPMS-gyroid and stochastic structures fabricated via Powder Bed Fusion Laser Beam (PBF-LB). This study aims to understand how complex lattice structures and post-manufacturing treatment, particularly chemical etching, affect the mechanical properties, surface morphology, fatigue resistance and biocompatibility of these metamaterials for biomedical applications.

Design/methodology/approach

Selective Laser Melting (SLM) technology was used to fabricate TPMS-gyroid and Voronoi stochastic designs with three different relative densities (0.2, 0.3 and 0.4) in Ti-6Al-4V ELI alloy. The as-built samples underwent a chemical etching process to enhance surface quality. Mechanical characterization included static compression and dynamic fatigue testing, complemented by scanning electron microscopy (SEM) for surface and failure analysis. The biocompatibility of the samples was assessed through in-vitro cell viability assays using the Alamar Blue assay and cell proliferation studies.

Findings

Chemical etching significantly improves the surface morphology, mechanical properties and fatigue resistance of both TPMS-gyroid and stochastic structures. Gyroid structures demonstrated superior mechanical performance and fatigue resistance compared to stochastic structures, with etching providing more pronounced benefits in these aspects. In-vitro biocompatibility tests showed high cytocompatibility for both as-built and etched samples, with etched samples exhibiting notably improved cell viability. The study also highlights the importance of design and post-processing in optimizing the performance of Ti64 components for biomedical applications.

Originality/value

The comparative analysis between as-built and etched conditions, alongside considering different lattice designs, provides valuable information for developing advanced biomedical implants. The demonstration of enhanced fatigue resistance and biocompatibility through etching adds significant value to the field of additive manufacturing, suggesting new avenues for designing and post-processing implantable devices.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 4 June 2024

Ludovico Martignoni, Andrea Vegro, Sara Candidori, Mohammad Qasim Shaikh, Sundar V. Atre, Serena Graziosi and Riccardo Casati

This study aims to deepen the knowledge concerning the metal fused filament fabrication technology through an analysis of the printing parameters of a commercial 316L stainless…

Abstract

Purpose

This study aims to deepen the knowledge concerning the metal fused filament fabrication technology through an analysis of the printing parameters of a commercial 316L stainless steel filament and their influence on the porosity and mechanical properties of the printed parts. It also investigates the feasibility of manufacturing complex geometries, including strut-and-node and triply periodic minimal surface lattices.

Design/methodology/approach

A three-step experimental campaign was carried out. Firstly, the printing parameters were evaluated by analysing the green parts: porosity and density measurements were used to define the best printing profile. Then, the microstructure and porosity of the sintered parts were investigated using light optical and scanning electron microscopy, while their mechanical properties were obtained through tensile tests. Finally, manufacturability limits were explored with reference samples and cellular structures having different topologies.

Findings

The choice of printing parameters drastically influences the porosity of green parts. A printing profile which enables reaching a relative density above 99% has been identified. However, voids characterise the sintered components in parallel planes at the interfaces between layers, which inevitably affect their mechanical properties. Lattice structures and complex geometries can be effectively printed, debinded, and sintered if properly dimensioned to fulfil printing constraints.

Originality/value

This study provides an extensive analysis of the printing parameters for the 316L filament used and an in-depth investigation of the potential of the metal fused filament fabrication technology in printing lightweight structures.

Article
Publication date: 20 September 2024

Renato Zona, Luca Esposito, Simone Palladino and Vincenzo Minutolo

Heterogeneous and micro-structured materials have been the object of multiscale and homogenization techniques aimed at recognizing the elastic properties of the equivalent…

Abstract

Purpose

Heterogeneous and micro-structured materials have been the object of multiscale and homogenization techniques aimed at recognizing the elastic properties of the equivalent continuum. The proposed investigation deals with the mechanical characterization of the heterogeneous material structured metamaterials through analyzing the ultimate strength using the limit analysis of the Representative Volume Element (RVE). To get the desired material strength, a novel finite element formulation based on the derivation of self-equilibrated solutions through the finite elements devoted to calculating the lower bound theorem has been implemented together with the limit analysis in Melàn’s formulation.

Design/methodology/approach

The finite element formulation is based on discrete mapping of Volterra dislocations in the structure using isoparametric representation. Using standard finite element techniques, the linear operator V, which relates the self-equilibrated internal solicitation to displacement-like nodal parameters, has been built through finite element discretization of displacement and strain.

Findings

The proposed work presented an elastic homogenization of the mechanical properties of an elementary cell with a geometry known in the literature, the isotropic truss. The matrix of elastic constants was calculated by subjecting the RVE to numerical load tests, simulated with a commercial FEM calculation code. This step showed the dependence of the isotropy properties, verified with Zener theory, on the density of the RVE. The isotropy condition of the material is only achieved for certain section ratios between body-centered cubic (BCC) and face-centered cubic (FCC), neglecting flexural effects at the nodes. The density that satisfies Zener’s conditions represents the isotropic geomatics of the isotropic truss.

Originality/value

For the isotropic case, the VFEM procedure was used to evaluate the isotropy of the limit domain and was compared with the Mises–Schleicher limit domain. The evaluation of residual ductility and dissipation energy allowed a measurement parameter for the limit anisotropy to be defined. The novelty of the proposal consisted in the formulation of both the linearized and the nonlinear limit locus of the material; hence, it furnished the starting point for further limit analysis of the structures whose elementary volume has been described through the proposed approach.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 January 2023

Mustafa S. Al-Khazraji, S.H. Bakhy and M.J. Jweeg

The purpose of this review paper is to provide a review of the most recent advances in the field of manufacturing composite sandwich panels along with their advantages and…

Abstract

Purpose

The purpose of this review paper is to provide a review of the most recent advances in the field of manufacturing composite sandwich panels along with their advantages and limitations. The other purpose of this paper is to familiarize the researchers with the available developments in manufacturing sandwich structures.

Design/methodology/approach

The most recent research articles in the field of manufacturing various composite sandwich structures were reviewed. The review process started by categorizing the available sandwich manufacturing techniques into nine main categories according to the method of production and the equipment used. The review is followed by outlining some automatic production concepts toward composite sandwich automated manufacturing. A brief summary of the sandwich manufacturing techniques is given at the end of this article, with recommendations for future work.

Findings

It has been found that several composite sandwich manufacturing techniques were proposed in the literature. The diversity of the manufacturing techniques arises from the variety of the materials as well as the configurations of the final product. Additive manufacturing techniques represent the most recent trend in composite sandwich manufacturing.

Originality/value

This work is valuable for all researchers in the field of composite sandwich structures to keep up with the most recent advancements in this field. Furthermore, this review paper can be considered as a guideline for researchers who are intended to perform further research on composite sandwich structures.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 25 April 2024

Ilse Valenzuela Matus, Jorge Lino Alves, Joaquim Góis, Paulo Vaz-Pires and Augusto Barata da Rocha

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process…

1432

Abstract

Purpose

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process, materials, structural design features and implementation location to determine predominant parameters, environmental impacts, advantages, and limitations.

Design/methodology/approach

The review analysed 16 cases of artificial reefs from both temperate and tropical regions. These were categorised based on the AM process used, the mortar material used (crucial for biological applications), the structural design features and the location of implementation. These parameters are assessed to determine how effectively the designs meet the stipulated ecological goals, how AM technologies demonstrate their potential in comparison to conventional methods and the preference locations of these implementations.

Findings

The overview revealed that the dominant artificial reef implementation occurs in the Mediterranean and Atlantic Seas, both accounting for 24%. The remaining cases were in the Australian Sea (20%), the South Asia Sea (12%), the Persian Gulf and the Pacific Ocean, both with 8%, and the Indian Sea with 4% of all the cases studied. It was concluded that fused filament fabrication, binder jetting and material extrusion represent the main AM processes used to build artificial reefs. Cementitious materials, ceramics, polymers and geopolymer formulations were used, incorporating aggregates from mineral residues, biological wastes and pozzolan materials, to reduce environmental impacts, promote the circular economy and be more beneficial for marine ecosystems. The evaluation ranking assessed how well their design and materials align with their ecological goals, demonstrating that five cases were ranked with high effectiveness, ten projects with moderate effectiveness and one case with low effectiveness.

Originality/value

AM represents an innovative method for marine restoration and management. It offers a rapid prototyping technique for design validation and enables the creation of highly complex shapes for habitat diversification while incorporating a diverse range of materials to benefit environmental and marine species’ habitats.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 22 August 2024

Sean McConnell, David Tanner and Kyriakos I. Kourousis

Productivity is often cited as a key barrier to the adoption of metal laser-based powder bed fusion (ML-PBF) technology for mass production. Newer generations of this technology…

Abstract

Purpose

Productivity is often cited as a key barrier to the adoption of metal laser-based powder bed fusion (ML-PBF) technology for mass production. Newer generations of this technology work to overcome this by introducing more lasers or dramatically different processing techniques. Current generation ML-PBF machines are typically not capable of taking on additional hardware to maximise productivity due to inherent design limitations. Thus, any increases to be found in this generation of machines need to be implemented through design or adjusting how the machine currently processes the material. The purpose of this paper is to identify the most beneficial existing methodologies for the optimisation of productivity in existing ML-PBF equipment so that current users have a framework upon which they can improve their processes.

Design/methodology/approach

The review method used here is the preferred reporting items for systematic review and meta-analysis (PRISMA). This is complemented by using an artificial intelligence-assisted literature review tool known as Elicit. Scopus, WEEE, Web of Science and Semantic Scholar databases were searched for articles using specific keywords and Boolean operators.

Findings

The PRIMSA and Elicit processes resulted in 51 papers that met the criteria. Of these, 24 indicated that by using a design of experiment approach, processing parameters could be created that would increase productivity. The other themes identified include scan strategy (11), surface alteration (11), changing of layer heights (17), artificial neural networks (3) and altering of the material (5). Due to the nature of the studies, quantifying the effect of these themes on productivity was not always possible. However, studies citing altering layer heights and processing parameters indicated the greatest quantifiable increase in productivity with values between 10% and 252% cited. The literature, though not always explicit, depicts several avenues for the improvement of productivity for current-generation ML-PBF machines.

Originality/value

This systematic literature review provides trends and themes that aim to influence and support future research directions for maximising the productivity of the ML-PBF machines.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 21 June 2024

Francesco Bandinelli, Martina Scapin and Lorenzo Peroni

Finite element (FE) analysis can be used for both design and verification of components. In the case of 3D-printed materials, a proper characterization of properties, accounting…

452

Abstract

Purpose

Finite element (FE) analysis can be used for both design and verification of components. In the case of 3D-printed materials, a proper characterization of properties, accounting for anisotropy and raster angles, can help develop efficient material models. This study aims to use compression tests to characterize short carbon-reinforced PA12 made by fused filament fabrication (FFF) and to model its behaviour by the FE method.

Design/methodology/approach

In this work, the authors focus on compression tests, using post-processed specimens to overcome external defects introduced by the FFF process. The material’s elastoplastic mechanical behaviour is modelled by an elastic stiffness matrix, Hill’s anisotropic yield criterion and Voce’s isotropic hardening law, considering the stacking sequence of raster angles. A FE analysis is conducted to reproduce the material’s compressive behaviour through the LS-DYNA software.

Findings

The proposed model can capture stress values at different deformation levels and peculiar aspects of deformed shapes until the onset of damage mechanisms. Deformation and damage mechanisms are strictly correlated to orientation and raster angle.

Originality/value

The paper aims to contribute to the understanding of 3D-printed material’s behaviour through compression tests on bulk 3D-printed material. The methodology proposed, enriched with an anisotropic damage criterion, could be effectively used for design and verification purposes in the field of 3D-printed components through FE analysis.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 September 2024

Sagar H. Mane, Tushar S. Wagh, Gotan H. Jain and Madhavrao K. Deore

The study aims to develop an inexpensive metal oxide semiconductor gas sensor with high sensitivity, excellent selectivity for a specific gas and rapid response time.

Abstract

Purpose

The study aims to develop an inexpensive metal oxide semiconductor gas sensor with high sensitivity, excellent selectivity for a specific gas and rapid response time.

Design/methodology/approach

This study synthesized Zn2SnO4 nanostructures using a hydrothermal method with a 1 M concentration of zinc chloride (ZnCl2) as the zinc source and a 0.7 M concentration of tin chloride (SnCl4) as the tin source. Thick films of nanostructured Zn2SnO4 were then produced using screen printing. The structural properties of Zn2SnO4 were confirmed using X-ray diffraction, and the formation of Zn2SnO4 nanoparticles was verified by transmission electron microscopy. Scanning electron microscopy was used to analyse the surface morphology of the fabricated material, while energy dispersive spectroscopy provided insight into the chemical composition of the thick film. These fabricated thick films underwent testing for various hazardous gases, including nitrogen dioxide, ammonia, hydrogen sulphide (H2S), ethanol and methanol.

Findings

The nanostructured Zn2SnO4 thick film sensor demonstrates a notable sensitivity to H2S gas at a concentration of 500 ppm when operated at 160°C. Its selectivity, response time and recovery time were assessed and documented.

Research limitations/implications

The primary limitations of this research on metal oxide semiconductor gas sensors include poor selectivity to specific gases, limited durability and challenges in achieving detection at room temperature.

Practical implications

The nanostructured Zn2SnO4 thick film sensor demonstrates a strong response to H2S gas, making it a promising candidate for commercial production. The detection of H2S is crucial in various sectors, including industries and sewage plants, where monitoring this gas is essential.

Social implications

Currently, heightened global apprehension about atmospheric pollution stems from the existence of perilous toxic and flammable gases. This underscores the imperative need for monitoring such gases. Toxic and flammable gases are frequently encountered in both residential and industrial environments, posing substantial hazards to human health. Noteworthy accidents involving flammable gases have occurred in recent years. It is crucial to comprehend the presence and composition of these gases in the surroundings for precise detection, measurement and control. Thus, there has been a significant push for extensive research and development in diverse sensor technologies using various materials and methodologies to monitor and regulate these gases effectively.

Originality/value

In this research, Zn2SnO4 nanostructures were synthesized using a hydrothermal method with ZnCl2 at a concentration of 1 M for zinc and SnCl4 at a concentration of 0.7 M for tin. Thick films of nanostructured Zn2SnO4 were then fabricated via screen printing technique. Following fabrication, all thick films were subjected to testing with various toxic gases, and the results were compared to previously published data. The analysis indicated that the nanostructured Zn2SnO4 thick film sensor demonstrated outstanding performance concerning gas response, gas concentration, selectivity and response time, particularly towards H2S gas.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 25 September 2024

Veysel Erturun and Eyyup Ozbay

The purpose of this study is AlZn-based produced by high speed mechanical alloying method to investigate the effect of Zn amount on the composite material, Al-Zn-Mg-Cu-SiC…

Abstract

Purpose

The purpose of this study is AlZn-based produced by high speed mechanical alloying method to investigate the effect of Zn amount on the composite material, Al-Zn-Mg-Cu-SiC composite material billets are obtained by sintering.

Design/methodology/approach

Mechanical alloying, X-ray diffraction analysis (XRD) graphics, sintering, polishing, scanning electron microscopy and energy dispersive X-ray analyzer (EDX) images and micro hardness tests were applied, respectively.

Findings

In the XRD analysis results, it was observed that the Al peak height decreased as the alloying time increased. When the samples sintered for 90 min are examined, it can be clearly seen that the hardness increases as the Zn ratio increases. EDX analysis results also support XRD results.

Originality/value

Increase in strength will require the use of thinner sheet metal and smaller rivets to achieve the same strength. This will reduce the weight of the aircraft. Weight reduction also means less fuel consumption and more economical flight. This increase in strength is a very important scientific achievement.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 17