Search results

1 – 10 of 83
Article
Publication date: 22 July 2021

Sarfo Mensah, Collins Ameyaw, Blondel Akun Abaitey and Hayford Obeng Yeboah

Over dependence on river/sea sand as building material has impacted the environment negatively. However, laterite, which is an environment-friendly indigenous building material in…

Abstract

Purpose

Over dependence on river/sea sand as building material has impacted the environment negatively. However, laterite, which is an environment-friendly indigenous building material in sub-Saharan Africa, has been less exploited as a suitable alternative. This paper aims to ascertain the optimum cement–laterite mix proportion at which laterite can be stabilized for production of walling units.

Design/methodology/approach

Using an experimental method, laterite was collected from three borrow pit sites. Sieve analysis was performed to determine the particle size distribution. Also, the degree of workability of the cement–laterite mix was ascertained using slump test. Compressive strengths were determined at cement stabilization percentages of 3%, 7% and 10% on 12 cubes of100 mm cast and cured for 14 and 28 days, respectively.

Findings

The results showed that the lateritic soil investigated, achieves its optimum strength in 28 days of curing, at a stabilization level of 10%. An average compressive strength of 2.41 N/mm2, which is 20.5% greater than the target strength, was achieved.

Practical implications

To meet the desired compressive strength of alternative walling units while achieving environmental sustainability and efficiency in production, cement stabilization of lateritic soils should become a recommended practice by built environment professionals in sub-Saharan Africa.

Originality/value

This paper is one of the first research works that attempts to determine the optimum level at which the abundant sub-Saharan laterite can be chemically stabilized for the production of non-load bearing walling units. This research promotes an environment-friendly alternative building material to sea sand, river sand and off-shore sand.

Details

Journal of Engineering, Design and Technology , vol. 20 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 5 June 2017

Richard Ohene Asiedu

The quest to reduce the cost of concrete which is a major construction input has prompted investigations into assessing the suitability of alternative sources of conventional…

Abstract

Purpose

The quest to reduce the cost of concrete which is a major construction input has prompted investigations into assessing the suitability of alternative sources of conventional materials. This paper aims to report the compressive strength and workability of lateritic gravel used as all-in aggregate for concrete production.

Design/methodology/approach

Three prescribed mixes from all-in aggregate concrete were compared with concrete from lateritic gravel. The paper investigated the variation in strength of four different mixes – 100: 0, 90: 10, 80: 20 and 70: 30 – when portions of the lateritic gravel were replaced with pit sand, respectively, using varying water cement ratios to achieve optimal workability.

Findings

The density and compressive strength of each cube was measured on the 7th and 28th test dates. An increase in slump and compressive strength was observed in the lateritic concrete, as portions of the lateritic gravel were replaced with sand. However, the rate of increase in the compressive strength tended to decrease with increase in part replacement of lateritic gravel with sand indicating that there was a threshold of percentage of sand increase after which the compressive strengths are likely to decrease. This work never reached this threshold, but it is estimated to be about 40 per cent.

Research limitations/implications

Investigations focused on lateritic gravel sampled from two sites to represent samples from both the forest and savannah belt.

Practical/implications

Lateritic gravel can be used as all-in aggregate for non-structural concrete.

Originality/value

The compressive strengths achieved were better than those for the available normal all-in aggregate used.

Details

Journal of Engineering, Design and Technology, vol. 15 no. 03
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 16 July 2020

Linu Babu, S. Vishnu Mohan, Mahesh Mohan and A.P. Pradeepkumar

This paper aims to examine the geochemical change experienced by laterites in Kerala, India, subjected to tropical monsoonal climate. These sediments are underlain by hard rock…

Abstract

Purpose

This paper aims to examine the geochemical change experienced by laterites in Kerala, India, subjected to tropical monsoonal climate. These sediments are underlain by hard rock. The source rock characteristics have a major stake on the ultimate composition of sediments, as also the climatic conditions which an area experience.

Design/methodology/approach

Core samples have been obtained from several locations in a lateritic plateau. The upper portions of the borehole cores are composed of the lateritic hard cap, followed by lateritic soils. The soil samples were subjected to sediment texture analysis and XRF analysis (Bruker S4 Pioneer Sequential Wavelength-Dispersive XRF) for the determination of major elements ((in oxide form).

Findings

Major element geochemistry has revealed the following order of relative proportions of elements (in oxide form) SiO2 > Al2O3 > Fe2O3 > TiO2 >> Na2O > P2O5 > CaO > K2O > MgO > MnO. Even though the concentrations of SiO2, Al2O3 and Fe2O3 contribute 90% of major element chemistry, there is no significant correlation found for these elements within themselves or with others.

Research limitations/implications

Microscale movement of elements could not be characterised in this study. This requires access to an electron probe micro analyzer.

Practical implications

The practical implication of tropical weathering is that enhanced chemical leaching leads to movement of most elements out of the system, except for Al, leading to the possible formation of bauxite, or aluminous laterite.

Social implications

The weathered products in this study provide livelihood sustenance for many of the local households, through manual production of laterite bricks, which are used in construction.

Originality/value

The indices of the intensity of chemical alteration/weathering like chemical index of alteration (CIA), chemical index of weathering (CIW) and weathering index of parker (WIP) reveal that the sediments indicate intense weathering of the source area prior to being deposited in the present location. This indicates enhanced monsoonal activity in the provenance areas, than that obtained today.

Details

Ecofeminism and Climate Change, vol. 2 no. 2
Type: Research Article
ISSN: 2633-4062

Keywords

Article
Publication date: 1 May 1964

WILFRED J. PLUMBE

The white buildings of Ahmadu Bello University lie between the A.19 Zaria‐Funtua road and a small river that runs, deeply trenched in red laterite, through the surrounding…

Abstract

The white buildings of Ahmadu Bello University lie between the A.19 Zaria‐Funtua road and a small river that runs, deeply trenched in red laterite, through the surrounding scrubland. For much of the year this “river” is a spruit of water no more than a foot wide and two inches deep—it is only in electric storms that it hisses as a torrent between the laterite banks—nevertheless, it may be taken as a pledge, at all times of the year, that sufficient subterranean water may be pumped out of the sands of the river‐bed to meet the needs of the University. The large blocks of buildings, in modern concrete idiom, look as if they have been torn from a city and dropped upon this open scrubland.

Details

Library Review, vol. 19 no. 5
Type: Research Article
ISSN: 0024-2535

Book part
Publication date: 12 July 2021

Mohd Fadhli Abd Rashid, Noraliani Alias, Kamarudin Ahmad, Radzuan Sa’ari, Frank Tsung-Chen Tsai, Mohd Zamri Ramli and Zulkiflee Ibrahim

The impact of climate change towards water surface resources is crucial, particularly in developing and non-developing countries. Groundwater as a main water resource is thus an…

Abstract

The impact of climate change towards water surface resources is crucial, particularly in developing and non-developing countries. Groundwater as a main water resource is thus an essential. However, contamination due to hydrocarbon spills affects the groundwater as a water resource, especially as a main source of drinking water. This chapter investigates the light non-aqueous phase liquid (LNAPL) penetrations in double-porosity soil with different moisture contents and with or without vibration impact. It also explains the LNAPL penetration phenomena by employing image analysis. The physical laboratory experiments were implemented using an acrylic cylinder, a mirror, toluene and a Nikon D90 DSLR digital camera. Prepared soil was poured in an acrylic cylinder and compressed with compressor until it became 10 cm in height. LNAPL was then poured instantaneously onto the acrylic cylinder that was filled with soil sample. The LNAPL penetration patterns were recorded and monitored using a Nikon D90 DSLR digital camera. The processing technique was conducted at predetermined time intervals using Surfer software and Matlab routine to plot the LNAPL pattern. The results showed that a higher penetration rate of LNAPL occurred with higher moisture content and without vibration impact. The penetration time for LNAPL to reach the bottom of the soil sample was found to be longer for the soil that had low moisture content and with vibration impact.

Details

Water Management and Sustainability in Asia
Type: Book
ISBN: 978-1-80071-114-3

Keywords

Article
Publication date: 28 March 2023

Ibrahim Neya, Daniel Yamegueu, Adamah Messan, Yezouma Coulibaly, Arnaud Louis Sountong-Noma Ouedraogo and Yawovi Mawuénya Xolali Dany Ayite

The stabilization of earthen blocks improves their mechanical strength and avoids adobe construction erosion due to rainwater. However, the stabilization affects the thermal…

Abstract

Purpose

The stabilization of earthen blocks improves their mechanical strength and avoids adobe construction erosion due to rainwater. However, the stabilization affects the thermal properties of the earthen blocks, and thus their capacity to provide adequate thermal comfort to occupants. This article examines the influence of cement and geopolymer binders on thermal comfort in compressed earthen buildings in hot and arid climates.

Design/methodology/approach

The test cell is on the building platform in Burkina Faso. The building is made of compressed earth blocks (CEB) consisting of laterite, water and binder. The thermal models of the building were implemented in EnergyPlus v9.0.1 software. Empirical validation is used to check whether the model used for the thermal dynamic simulation can reproduce with accuracy the thermal behavior in a real situation. The adaptive thermal comfort model of ASHRAE 55–2010 was used to assess thermal comfort in long-term hot and dry tropical conditions.

Findings

The results show that the CEB buildings remain hot despite the use of cement or geopolymer binder. Indeed, with both cement and geopolymer binders, on a daily basis, 19 h and 15 h are uncomfortable during, respectively, the hot and cold seasons. An increase of 1% in cement content raises the comfort hours by 9.2 h during the hot season and 11.7 h during the cold season. Hence, the comfort time varies linearly with the cement content in the building material. Moreover, there is no linear relationship between comfort time and geopolymer rate.

Research limitations/implications

Complementary work should also assess the influence of stabilization on building humidity levels. In fact, earthen materials are very sensitive to outdoor humidity and indoor humidity affects thermal comfort even if it is not taken into account in the ASHRAE adaptive thermal comfort model.

Practical implications

The present study will certainly contribute to a better valorization of clay potential in countries with similar climatic conditions.

Social implications

The use of geopolymer binder is a suitable ecological option to replace the cement binder. It is important to mention that nighttime comfort can be increased through passive strategies such as natural ventilation.

Originality/value

Most CEB material stabilization analyses including cement and geopolymer ones were mostly investigated at the laboratory scale and less at the building scale. Also, the influence of the binder rate on the thermal performance of buildings made of cement and geopolymer has not yet been assessed. This paper fills this gap of knowledge by assessing the impact of cement and geopolymer binder rates on the thermal comfort of CEB dwellings.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Expert briefing
Publication date: 7 January 2021

Stainless steel production in China and Indonesia rose in the final months of 2020, tightening the market. Softer recent prices for stainless steel and NPI suggest near-term…

Details

DOI: 10.1108/OXAN-DB258627

ISSN: 2633-304X

Keywords

Geographic
Topical
Article
Publication date: 12 January 2024

Rohit R. Salgude, Prasad Pailwan, Sunil Pimplikar and Dipak Kolekar

Soil is an essential component of road construction and is used in the form of subgrade materials. It ensures the stability and durability of the road under adverse conditions;…

Abstract

Purpose

Soil is an essential component of road construction and is used in the form of subgrade materials. It ensures the stability and durability of the road under adverse conditions; being one of the important parameters, poor judgment of the engineering properties of soil can lead to pavement failure. Geopathic stress (GS) is a subtle energy in the form of harmful electromagnetic radiation. This study aims to investigate the effect of GS on soil and concrete.

Design/methodology/approach

A total of 23 soil samples from stress zones and nonstress zones were tested for different engineering properties like water content, liquid limit, plastic limit, specific gravity and California bearing ratio. Two concrete panels were placed on GS zones, and their quality was monitored through nondestructive testing for a period of one year.

Findings

The result shows that the engineering properties of soil and pavement thickness are increasing in stress zones as compared with nonstress zones. For concrete panels, as time passes, the quality of the concrete gets reduced, which hints toward the detrimental effect of GS.

Originality/value

This research is a systematic, scientific, reliable study which evaluated subgrade characteristics thus determining the detrimental impact of the GS on soil and pavement thickness. On a concluding note, this study provides a detailed insight into the performance of the road segment when subjected to GS. Through this investigation, it is recommended that GS should be considered in the design of roads.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 March 2022

Adamu Muhammed, Clement Oluwole Folorunso and Gabriel Fadairo

Understanding the thermal performance of sandcrete hollow block walls in the tropic is very essential for occupants' well-being, productivity and efficiency, due to its widespread…

Abstract

Purpose

Understanding the thermal performance of sandcrete hollow block walls in the tropic is very essential for occupants' well-being, productivity and efficiency, due to its widespread application in buildings in the study area. Lokoja, in Nigeria, lies in the warm humid zone with its attendant's high temperatures all year round. Thus, providing an acceptable walling material that will control the high indoor air temperature becomes imperative. This paper assessed sandcrete hollow blocks as a walling material used in Lokoja, to determine the thermal performances for effective thermal comfort of the residents.

Design/methodology/approach

It involves the construction of a habitable model building with the commonly available sandcrete hollow blocks in the area. One unit of Cryopak iMINI Temperature and Relative Humidity Data Logger called new generation intelligent iMINI with Serial Number and Product Code MX-CI-145–0009 and MX-HE-S-16-L was installed, to record the indoor air temperature and relative humidity data at an interval of one hour, for 12 months covering dry and wet seasons. The results of the recorded data were downloaded to an excel spread sheet for assessment and analysis throughout the seasons. The values were computed using the temperature–humidity index (THI) equation, with a view to determine the indoor thermal comfort level category.

Findings

The study revealed that sandcrete hollow block walls provide thermal discomfort of the indoor environment for both seasons, with attendant adverse effects in the comfort of the occupants. The paper concludes that proper orientation of buildings, planting of trees, use of low absorbing or reflective surface materials, application of cavity walls to receive insulation materials in between the hollow spaces provided, instead of the single walling as well as providing shading device elements, can improve users' comfort and also ameliorate the heat effect on the external surface of building transferred into the interior by conduction, radiation or convection within the area and in the tropics at large. Other thermally eco-friendly wall materials available in Lokoja includes timber, stabilized laterite–cement blocks, burnt bricks and earth-mud bricks which can be used to replace sandcrete hollow block walls. These alternative wall materials are used for construction of residential and office buildings by the colonial government of Sir Fredrick Lugard in the study area.

Practical implications

The application of sandcrete hollow blocks as a wall material is in vogue, not minding its thermal discomfort to the users and the environment; this is due to its availability and ease of production. The acceptability of this walling material requires holistic study to unravel the best way to reduce the thermal discomfort inherent in its application.

Originality/value

The author succeeded in revealing the thermal performance of sandcrete hollow blocks as walling material in Lokoja, the study area. It is a first attempt at understanding the performance for human comfort in the area. This will greatly assist the resident and other researchers to improve on the application of sandcrete hollow blocks as walling material towards ensuring that maximum indoor thermal comfort is achieved.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 4
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 23 May 2018

Oluwole Alfred Olatunji, Adenike Omolabake Orundami and Oluwatomi Ogundare

A section of project management literature attributes overruns to estimators’ deceit and delusion. An example of this is Flyvbjerg’s theorisation of strategic misrepresentation…

Abstract

Purpose

A section of project management literature attributes overruns to estimators’ deceit and delusion. An example of this is Flyvbjerg’s theorisation of strategic misrepresentation and optimism bias. To show that such a notion is not true entirely, the study elicits evidence relating to how costs of projects often fluctuate erratically as prices of construction materials change throughout contract cycle times. The purpose of this paper is to examine the causal relationships between persistent changes in prices of construction materials and project’s outturn costs.

Design/methodology/approach

The authors obtained and analysed price data of construction materials published in a Nigerian national daily in the 16 years between 2000 and 2015. Additional data were obtained from a quantity surveying firm to validate the archival data on material prices, and to compare the firm’s robust database of project estimates and the corresponding outturn costs of specific building elements (detailed in the study). The goal of the analysis is to explore spontaneity and causal impact in the relationship between changes in prices of construction materials and project costs. Kolmogorov-Smirnov and Anderson-Darling tests were used to obtain the probability distributions of the causal relationships.

Findings

Findings show disproportionate positive correlations between changes in material prices and outturn costs in Nigeria. An important dimension to this, however, is that although fluctuations in material costs often trigger variations to project costs, outturn price only accounts for about one-third of actual cost variability. Recovery of costs, not least profit making, under these conditions is a complex process.

Originality/value

This paper concludes that dynamism in cost attributes is neither a deceit nor a delusion; understanding and tolerating them is not a systemic weakness, rather an essential key to project success and stakeholder satisfaction. Findings from the study also bring measured certainties to the transformation of variable costs into fixed price outcomes, an important consideration that will help contract estimators and project managers to understand the likelihood of fluctuation in material costs and how these might trigger variability in project costs.

Details

Built Environment Project and Asset Management, vol. 8 no. 4
Type: Research Article
ISSN: 2044-124X

Keywords

1 – 10 of 83