Search results

1 – 10 of over 1000
Article
Publication date: 8 March 2011

Jingbin Hao, Liang Fang and Robert E. Williams

Rapid prototyping (RP) of large‐scale solid models requires the stereolithographic (STL) file to be precisely partitioned. Especially, the selection of cutting positions is…

1014

Abstract

Purpose

Rapid prototyping (RP) of large‐scale solid models requires the stereolithographic (STL) file to be precisely partitioned. Especially, the selection of cutting positions is critical for the fabrication and assembly of sub‐models. The purpose of this paper is to present an efficient curvature‐based partitioning for selecting the best‐fit loop and decomposing the large complex model into smaller and simpler sub‐models with similar‐shaped joints, which facilitate the final assembly.

Design/methodology/approach

The partition algorithm is benefited from curvature analysis of the model surface, including extracting the feature edges and constructing the feature loops. The efficiency enhancement is achieved by selecting the best‐fit loop and constructing the similar‐shape joints. The utility of the algorithm is demonstrated by the fabrication of large‐scale rapid prototypes.

Findings

By using the proposed curvature‐based partition algorithm, the reasonability and efficiency of STL model partition can be greatly improved, and the complexity of sub‐models has been reduced. It is found that the large‐scale model is efficiently partitioned and the sub‐models are precisely assembled using the proposed partitioning.

Originality/value

The curvature‐based partition algorithm is used in the RP field for the first time. Based on the curvature‐based partitioning, the reasonability and efficiency of large‐scale RP is addressed in this paper.

Details

Rapid Prototyping Journal, vol. 17 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 June 2019

Qin Lian, Linian Zhou, Xiao Li, Wei Mao and Dichen Li

The purpose of this paper is to present a new method for the fabrication of a large-scaled muscle scaffold containing an artificial hollow tube network, which may solve the…

Abstract

Purpose

The purpose of this paper is to present a new method for the fabrication of a large-scaled muscle scaffold containing an artificial hollow tube network, which may solve the problems of nutrient supply, oxygen exchange and metabolic waste removal.

Design/methodology/approach

In this paper, a ferric chloride structural strength-enhanced sodium alginate hollow tube was used to build the hollow tube network. Gelatin infill was then added to make a large alginate/gelation gel soft tissue scaffold. A pilot experiment was performed and an osmotic test platform was built to study the perfusion and osmotic ability of the 3D printed hollow tube. The essential fabrication parameters (printing velocity and gap) for building the vascular (i.e., hollow tube) network-contained scaffold were investigated. Moreover, cells in culture were spread within the gelation scaffold, and the circulation characteristics of the hollow tube network were studied.

Findings

The printed large-scaled scaffold that contained a ferric chloride structural strength-enhanced sodium alginate hollow tube had good perfusion ability. The osmotic distance of the hollow tube reached 3.7 mm in 8 h in this experiment.

Research limitations/implications

The osmotic distance was confirmed by perfusing a phenol solution; although it is more reliable to test for cell viability, this will be investigated in our later research.

Practical implications

This research may provide new insights in the area of tissue engineering for large-scaled vascularized scaffold fabrication.

Originality/value

This paper presents a new method for fabricating large-scaled scaffolds, and the perfusion ability and osmotic distance of a ferric chloride structural strength-enhanced sodium alginate hollow tube are shown.

Details

Rapid Prototyping Journal, vol. 26 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 3 April 2018

Kentaro Yamamoto and Mary Louise Lennon

Fabricated data jeopardize the reliability of large-scale population surveys and reduce the comparability of such efforts by destroying the linkage between data and measurement…

Abstract

Purpose

Fabricated data jeopardize the reliability of large-scale population surveys and reduce the comparability of such efforts by destroying the linkage between data and measurement constructs. Such data result in the loss of comparability across participating countries and, in the case of cyclical surveys, between past and present surveys. This paper aims to describe how data fabrication can be understood in the context of the complex processes involved in the collection, handling, submission and analysis of large-scale assessment data. The actors involved in those processes, and their possible motivations for data fabrication, are also elaborated.

Design/methodology/approach

Computer-based assessments produce new types of information that enable us to detect the possibility of data fabrication, and therefore the need for further investigation and analysis. The paper presents three examples that illustrate how data fabrication was identified and documented in the Programme for the International Assessment of Adult Competencies (PIAAC) and the Programme for International Student Assessment (PISA) and discusses the resulting remediation efforts.

Findings

For two countries that participated in the first round of PIAAC, the data showed a subset of interviewers who handled many more cases than others. In Case 1, the average proficiency for respondents in those interviewers’ caseloads was much higher than expected and included many duplicate response patterns. In Case 2, anomalous response patterns were identified. Case 3 presents findings based on data analyses for one PISA country, where results for human-coded responses were shown to be highly inflated compared to past results.

Originality/value

This paper shows how new sources of data, such as timing information collected in computer-based assessments, can be combined with other traditional sources to detect fabrication.

Details

Quality Assurance in Education, vol. 26 no. 2
Type: Research Article
ISSN: 0968-4883

Keywords

Article
Publication date: 29 April 2020

Karen Lee Bar-Sinai, Tom Shaked and Aaron Sprecher

The purpose of the paper is to advance remote robotic fabrication through an iterative and pedagogical protocol for shaping architectural grounds. Advancements in autonomous…

Abstract

Purpose

The purpose of the paper is to advance remote robotic fabrication through an iterative and pedagogical protocol for shaping architectural grounds. Advancements in autonomous robotic tools enable to reach increasingly larger scales of architectural and landscape construction and operate in remote and inaccessible sites. In parallel, the relation of architecture to its environment is significantly reconsidered, as the building industry's contribution to the environmental stress increases. In response, new practices emerge, addressing the reshaping and modulation of environments using digital tools. The context of extra-terrestrial architecture provides a ground for exploring these issues, as future practice in this domain relies on the use of remote autonomous means for repurposing local matter. As a result, the novelty in robotic construction laboratories is tied to innovation in architectural pedagogy.

Design/methodology/approach

This paper puts forth a pedagogical protocol and iterative framework for digital groundscaping using robotic tools. The framework is demonstrated through an intensive workshop led by the authors. To situate the discussion, digital groundscaping is linked to several conditions that characterize practice and relate to pedagogy. These conditions include the experimental dimension of knowledge in digital fabrication, the convergence of knowledge as part of the blur between the fields of architecture and landscape architecture and the bridging of heterogeneous knowledge sets (virtual and physical), which robotic fabrication on natural terrains entails.

Findings

The outcomes of the workshop indicate that iterative processes can assist in applying autonomous design protocols on remote grounds. The protocols were assessed in light of the roles of technological tools, design iterations and material agency in the robotic fabrication.

Originality/value

The paper concludes with observations linking the iterative protocol to new avenues in architectural pedagogy as means of advancing the capacity to digitally design, modulate and transform natural grounds.

Details

Archnet-IJAR: International Journal of Architectural Research, vol. 14 no. 3
Type: Research Article
ISSN: 2631-6862

Keywords

Article
Publication date: 1 August 2005

Stephen Mulligan, Geoff Melton, Ari Lylynoja and Keith Herman

Development and demonstration of an autonomous, mobile welding robot capable of fabricating large‐scale customised structures.

Abstract

Purpose

Development and demonstration of an autonomous, mobile welding robot capable of fabricating large‐scale customised structures.

Design/methodology/approach

An autonomous welding robot has been developed under the EC Framework V Growth program. The system comprises a global vision system for part location and orientation, and a robot transport vehicle (RTV) which carries a 6‐axis robot, robot controller, welding equipment, and local sensors at the welding torch. The RTV path, robot arm motion and weld process programming are performed automatically using sensors and specially customised simulation software.

Findings

The technology developed within the project was demonstrated, in November 2004, to be capable of identifying and welding large scale customised structures as found in the earth moving equipment and bridge fabrication industries.

Research limitations/implications

The project demonstrated that current sensor technology is capable of being applied successfully to autonomous robots, but further developments in sensor technology are required to improve accuracy and joint access.

Practical implications

The NOMAD concept of autonomous mobile robots provides an alternative solution to welding mass customised structures.

Originality/value

This project demonstrated, for the first time, the capability of autonomous robots to weld large scale customised structures.

Details

Industrial Robot: An International Journal, vol. 32 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 23 September 2022

Wei Li, Xiaoshan Lin and Yi Min Xie

Optimised concrete components are often of complex geometries, which are difficult and costly to cast using traditional formworks. This paper aims to propose an innovative…

Abstract

Purpose

Optimised concrete components are often of complex geometries, which are difficult and costly to cast using traditional formworks. This paper aims to propose an innovative formwork system for optimised concrete casting, which is eco-friendly, recyclable and economical.

Design/methodology/approach

In the proposed formwork system, ice is used as mould pattern to create desired geometry for concrete member, then sand mould is fabricated based on the ice pattern. A mix design and a mixing procedure for the proposed sand mould are developed, and compression tests are also performed to ensure sufficient strength of the sand mould. Furthermore, surface preparation of the sand mould is investigated for easy demoulding and for achieving good concrete surface quality. Additionally, recyclability of the proposed sand mould is tested.

Findings

The proposed mix design and mixing procedure can provide sufficient strength for sand mould in concrete casting. The finished components exhibit smooth surfaces and match designed geometries, and the proposed sand mould can be fully recycled with satisfactory strength.

Originality/value

To the best of the authors’ knowledge, this is the first study that combines ice pattern and sand mould to create recyclable formwork system for concrete casting. The new techniques developed in this research has great potential to be applied in the fabrication of large-scale concrete structures with complex geometries.

Article
Publication date: 29 April 2014

Tijjani Adam and U. Hashim

The purpose of this study is to present reports on fabrication of silicon (Si) nanowires (NWs). The study consists of microwire formation on silicon-on-insulator (SOI) that was…

Abstract

Purpose

The purpose of this study is to present reports on fabrication of silicon (Si) nanowires (NWs). The study consists of microwire formation on silicon-on-insulator (SOI) that was fabricated using a top-down approach which involved conventional photolithography coupled with shallow anisotropic etching.

Design/methodology/approach

A 5-inch p-type silicon-on-insulator (SOI) coated with 250nm layer and Photoresist (PR) with thickness of 400nm is coated in order to make pattern transfer via binary mask, after the exposure and development, a resist pattern between 3 μm-5 μm were obtained, Oxygen plasma spreen was used to reduce the size of the PR to 800 μm, after this, the wafer with 800 μm was loaded into SAMCO inductively coupled plasma (ICP)-RIE and got silicoon microwire was obtained. Next, the sample was put into an oxidation furnace for 15, 30, 45 and 60 minutes and the sample was removed and dipped into a buffered oxide etch solution for five minutes to remove all the SiO2 ashes.

Findings

The morphological characterization was conducted using scanning electron microscopy and atomic force microscopy. At terminal two, gold electrodes which were designated as source and drain were fabricated on top of individual NWs using conventional lithography electrical and chemical response. Once the trimming process has been completed, the device's current–voltage (I-V) characteristic was measured by using a Keithley 4200 semiconductor parameter analyser. Devices with different width of wires approximately 20, 40, 60 and 80 nm were characterized. The wire current variation as a function of the pH variation in voltage was investigated: pH monitoring for variations of pH values between 5 and 9.

Originality/value

This paper provides useful information on novel and yet simple cost-effective fabrication of SiNW; as such, it should be of interest to a broad readership, especially those interested in micro/nanofabrication.

Details

Microelectronics International, vol. 31 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 27 September 2019

Ijaz Ul Haq and Fiorenzo Franceschini

The purpose of this paper is to develop a preliminary conceptual scale for the measurement of distributed manufacturing (DM) capacity of manufacturing companies operating in…

Abstract

Purpose

The purpose of this paper is to develop a preliminary conceptual scale for the measurement of distributed manufacturing (DM) capacity of manufacturing companies operating in rubber and plastic sectors.

Design/methodology/approach

A two-step research methodology is employed. In first step, the dimensions of DM and different levels of each dimension have been defined. In second step, an empirical analysis (cluster analysis) of database firms is performed by collecting the data of 38 firms operating in Italian mould manufacturing sector. Application case studies are then analyzed to show the use of the proposed DM conceptual scale.

Findings

A hyperspace, composed of five dimensions of DM, i.e. manufacturing localization; manufacturing technologies; customization and personalization; digitalization; and democratization of design, is developed and a hierarchy is defined by listing the levels of each dimension in an ascending order. Based on this hyperspace, a conceptual scale is proposed to measure the positioning of a generic company in the DM continuum.

Research limitations/implications

The empirical data are collected from Italian mould manufacturing companies operating in rubber and plastic sectors. It cannot be assumed that the industrial sectors in different parts of the world are operating under similar operational, regulatory and economic conditions. The results, therefore, might not be generalized to manufacturing companies operating in different countries (particularly developing countries) under different circumstances.

Originality/value

This is first preliminary scale of its kind to evaluate the positioning of companies with respect to their DM capacity. This scale is helpful for companies to compare their capacity with standard profiles and for decision making to convert the existing manufacturing operations into distributed operations.

Details

Benchmarking: An International Journal, vol. 27 no. 1
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 25 September 2009

Zhenghao Yeh and Behrokh Khoshnevis

The purpose of this paper is to present an introduction to geometric conformity principles for examining the geometric deviation between the desired (designed) and the fabricated…

1189

Abstract

Purpose

The purpose of this paper is to present an introduction to geometric conformity principles for examining the geometric deviation between the desired (designed) and the fabricated surfaces which may be generated by a class of surface ruling fabrication processes such as flank milling, wire electrical discharge machining (WEDM), and contour crafting (CC).

Design/methodology/approach

In general, it is computationally challenging to calculate error approximation based on points. This paper proposes methods that efficiently calculate error approximation based on curve, surface area, and volume.

Findings

This paper derives the equations for calculating the ruled surface areas and the volume of 3D slices in 3D object models. One may use the difference of surface areas or volumes to determine the extent of the global conformity of the ruled surfaces. Additionally, local conformity analysis through calculating curve deviation has been introduced to improve the reliability of the global conformity analysis.

Research limitations/implications

The research results apply only to fabrication processes that generate ruled surfaces. There are, however, numerous applications in which ruled surfaces are generated, such as WEDM, any numerical control machining which uses cylindrical or conical cutting bits, and CC.

Practical implications

The research results presented will be applicable to fabrication processes such as flank milling, WEDM, and CC.

Originality/value

All developments presented are original. Also, CC, which is a candidate process for the developments presented in the paper, has been invented and developed by the authors.

Details

Rapid Prototyping Journal, vol. 15 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 December 2005

A. Arshak, K. Arshak, G. Lyons, D. Waldron, D. Morris, O. Korostynska and E. Jafer

Telemetry capsules have existed since the 1950s and were used to measure temperature, pH or pressure inside the gastrointestinal (GI) tract. It was hoped that these capsules would…

1444

Abstract

Purpose

Telemetry capsules have existed since the 1950s and were used to measure temperature, pH or pressure inside the gastrointestinal (GI) tract. It was hoped that these capsules would replace invasive techniques in the diagnosis of function disorders in the GI tract. However, problems such as signal loss and uncertainty of the pills position limited their use in a clinical setting. In this paper, a review of the capabilities of microelectromechanical systems (MEMS) for the fabrication of a wireless pressure sensor microsystem is presented.

Design/methodology/approach

The circuit requirements and methods of data transfer are examined. The available fabrication methods for MEMS sensors are also discussed and examples of wireless sensors are given. Finally, the drawbacks of using this technology are examined.

Findings

MEMS for use in wireless monitoring of pressure in the GI tract have been investigated. It has been shown that capacitive pressure sensors are particularly suitable for this purpose. Sensors fabricated for wireless continuous monitoring of pressure have been reviewed. Great progress, especially using surface micromachining, has been made in recent years. However, despite these advances, some challenges remain.

Originality/value

Provides a review of the capabilities of MEMS.

Details

Sensor Review, vol. 25 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of over 1000