Search results

1 – 10 of 15
Article
Publication date: 1 December 2003

F. Filser, P. Kocher and L.J. Gauckler

A new process called direct ceramic machining was successfully applied for the fabrication of dental restorations and technical components. It uses prefabricated, easy to machine…

1331

Abstract

A new process called direct ceramic machining was successfully applied for the fabrication of dental restorations and technical components. It uses prefabricated, easy to machine ceramic blanks. The shape of a ceramic component is machined with enlarged contours to compensate for the sintering shrinkage. Afterwards the machined component is sintered to full density and thereby shrinks to its final dimensions. Technical components from 5 to 100 mm in size possessing features of 1/10th mm to several millimeters and dental restorations were fabricated sucessfully, and thus demonstrate the capability for rapid production of ceramic functional prototypes. The dimensional accuracy is about 20 μm with a relative accuracy of 0.1 per cent of the component's length. Thus accurate net‐shape of the components could be achieved without hard machining.

Details

Assembly Automation, vol. 23 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 18 April 2008

Piotr Jasinski

The purpose of this work is to present the strategies and current state of development in the field of micro solid oxide fuel cells (μSOFC).

1176

Abstract

Purpose

The purpose of this work is to present the strategies and current state of development in the field of micro solid oxide fuel cells (μSOFC).

Design/methodology/approach

In the paper recent strategies of conventional and single chamber μSOFC are described. Some examples based on the author's research are presented.

Findings

It can be concluded that scale down of ceramic technologies is still more popular than MEMS. However, MEMS‐based technologies become recently to be used more frequently.

Research limitations/implications

The work is limited to the description of materials and technologies used in μSOFC.

Originality/value

The review presents very recent research in μSOFC. The results demonstrate critical areas in development of suitable technologies.

Details

Microelectronics International, vol. 25 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 March 2007

Tomofumi Miyashita

In this paper, using experimental results [1], empirical equations [2], and the concept of effective carriers while hopping in ionic conduction, an alternative explanation is…

Abstract

In this paper, using experimental results [1], empirical equations [2], and the concept of effective carriers while hopping in ionic conduction, an alternative explanation is discussed for open circuit voltage (OCV) using Sm‐doped Ceria electrolytes (SDC) in solid oxide fuel cells (SOFCs). Consequently, one chapter of the standard textbook [3] must be entirely modified. This alternative explanation not only coexists with major existing experimental results but also is useful for explaining minor experimental results. An experimental method is proposed to clarify the theoretical consideration.

Details

Multidiscipline Modeling in Materials and Structures, vol. 3 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 February 2005

Xiaoxuan Li, Jiwen Wang, Leon L. Shaw and Thomas B. Cameron

Commercial dental porcelain powder was deposited via slurry extrusion and laser densified to fabricate dental restorations in a multi‐material laser densification (MMLD) process.

1983

Abstract

Purpose

Commercial dental porcelain powder was deposited via slurry extrusion and laser densified to fabricate dental restorations in a multi‐material laser densification (MMLD) process.

Design/methodology/approach

A dental porcelain slurry was made from ball milled dental porcelain powders and extruded using the MMLD system. Extruded lines and rings were laser densified under different conditions in order to study how to build fully dense porcelain layers without warping and cracking during the MMLD process.

Findings

The geometric cross section of laser densified porcelain lines were dependent on laser processing parameters. Laser densified single ring showed no warping, and multiple layer body after laser densification showed cracks in the rings. The interface microstructure suggested good bonding between multiple layers. The mechanism to achieve single porcelain ring without warping and cracking is discussed. Alternate ways to build physical tooth layer by layer are proposed.

Originality/value

In the MMLD process, dental porcelain slurry was extruded from a human tooth computer file and laser densified to manufacture dental restorations based on solid freeform fabrication (SFF) principles. The understanding developed will pave the way for fabricating a physical dental restoration unit in the near future.

Details

Rapid Prototyping Journal, vol. 11 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 June 2010

A. Mauro, F. Arpino, N. Massarotti and P. Nithiarasu

The purpose of this paper is to describe two‐ and three‐dimensional numerical modelling of solid oxide fuel cells (SOFCs) by employing an accurate and stable fully matrix…

Abstract

Purpose

The purpose of this paper is to describe two‐ and three‐dimensional numerical modelling of solid oxide fuel cells (SOFCs) by employing an accurate and stable fully matrix inversion free finite element algorithm.

Design/methodology/approach

A general and detailed mathematical model has been developed for the description of the coupled complex phenomena occurring in fuel cells. A fully matrix inversion free algorithm, based on the artificial compressibility (AC) version of the characteristic‐based split (CBS) scheme and single domain approach have been successfully employed for the accurate and efficient simulation of high temperature SOFCs.

Findings

For the first time, a stable fully explicit algorithm has been applied to detailed multi‐dimensional simulation transport phenomena, coupled to chemical and electrochemical reactions, in fluid, porous and solid parts of a SOFC. The accuracy of the present results has been verified via comparison with experimental and numerical data available in the literature.

Originality/value

For the first time, thanks to a stabilization analysis conducted, the AC‐CBS algorithm has been successfully used to numerically solve the generalized model, applied in this paper to describe transport phenomena through free fluid channels and porous electrodes of SOFCs, without the need of further conditions at the fluid‐electrode interface.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 July 2019

Huang-Jan Hsu, Shyh-Yuan Lee, Cho-Pei Jiang and Richard Lin

This study aims to compare the marginal fit, flexural strength and hardness for a ceramic premolar that is constructed using dental computer aided machining (CAM) and…

Abstract

Purpose

This study aims to compare the marginal fit, flexural strength and hardness for a ceramic premolar that is constructed using dental computer aided machining (CAM) and three-dimensional slurry printing (3DSP).

Design/methodology/approach

Dental CAM and 3DSP are used to fabricate a premolar model. To reduce the fabrication time for 3DSP, a new composition of solvent-free slurry is proposed. Before it is fabricated, the dimensions of the green body for the premolar model are enlarged to account for the shrinkage ratio. A two-stage sintering process ensures accurate final dimensions for the premolar model. The surface morphology of the green body and the sintered premolars that are produced using the two methods is then determined using scanning electronic microscopy. The sintered premolars are seated on a stone model to determine the marginal gap using an optical microscope. The hardness and the flexural strength are also measured for the purpose of comparison.

Findings

The developed solvent-free slurry for 3DSP can be used to produce a premolar green body without micro-cracks or delamination. The maximal marginal gap for the sintered premolar parts that are constructed using the green bodies from dental CAM is 98.9 µm and that from 3DSP is 72 µm. Both methods produce a highly dense zirconia premolar using the same sintering conditions. The hardness value for the dental CAM group is 1238.8 HV, which is slightly higher than that for the 3DSP group (1189.4 HV) because there is a difference in the pre-processing of the initial ceramic materials. However, the flexural strength for 3DSP is 716.76 MPa, which is less than the requirement for clinical use.

Originality/value

This study verifies that 3DSP can be used to fabricate a zirconia dental restoration device that is as good as the one that is produced using the dental CAM system and which has a marginal gap that is smaller than the threshold value. The resulting premolar restoration devices that are produced by sintering the green bodies that are produced using 3DSP and dental CAM under the same conditions have a similar hardness value, which is four times greater than that of enamel. The flexural strength of 3DSP does not meet the requirement for clinical use.

Details

Rapid Prototyping Journal, vol. 25 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 January 2013

Jan Wilkes, Yves‐Christian Hagedorn, Wilhelm Meiners and Konrad Wissenbach

The purpose this paper is to develop an additive manufacturing (AM) technique for high‐strength oxide ceramics. The process development aims at directly manufacturing fully dense…

6764

Abstract

Purpose

The purpose this paper is to develop an additive manufacturing (AM) technique for high‐strength oxide ceramics. The process development aims at directly manufacturing fully dense ceramic freeform‐components with good mechanical properties.

Design/methodology/approach

The selective laser melting of the ceramic materials zirconia and alumina has been investigated experimentally. The approach followed up is to completely melt ZrO2/Al2O3 powder mixtures by a focused laser beam. In order to reduce thermally induced stresses, the ceramic is preheated to a temperature of at least 1,600°C during the build up process.

Findings

It is possible to manufacture ceramic objects with almost 100 percent density, without any sintering processes or any post‐processing. Crack‐free specimens have been manufactured that have a flexural strength of more than 500 MPa. Manufactured objects have a fine‐grained two‐phase microstructure consisting of tetragonal zirconia and alpha‐alumina.

Research limitations/implications

Future research may focus on improving the surface quality of manufactured components, solving issues related to the cold powder deposition on the preheated ceramic, further increasing the mechanical strength and transferring the technology from laboratory scale to industrial application.

Practical implications

Potential applications of this technique include manufacturing individual all‐ceramic dental restorations, ceramic prototypes and complex‐shaped ceramic components that cannot be made by any other manufacturing technique.

Originality/value

This new manufacturing technique based on melting and solidification of high‐performance ceramic material has some significant advantages compared to laser sintering techniques or other manufacturing techniques relying on solid‐state sintering processes.

Abstract

Purpose

Additive manufacturing (AM) or solid freeform fabrication (SFF) technique is extensively used to produce intrinsic 3D structures with high accuracy. Its significant contributions in the field of tissue engineering (TE) have significantly increased in the recent years. TE is used to regenerate or repair impaired tissues which are caused by trauma, disease and injury in human body. There are a number of novel materials such as polymers, ceramics and composites, which possess immense potential for production of scaffolds. However, the major challenge is in developing those bioactive and patient-specific scaffolds, which have a required controlled design like pore architecture with good interconnectivity, optimized porosity and microstructure. Such design not only supports cell proliferation but also promotes good adhesion and differentiation. However, the traditional techniques fail to fulfill all the required specific properties in tissue scaffold. The purpose of this study is to report the review on AM techniques for the fabrication of TE scaffolds.

Design/methodology/approach

The present review paper provides a detailed analysis of the widely used AM techniques to construct tissue scaffolds using stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), binder jetting (BJ) and advanced or hybrid additive manufacturing methods.

Findings

Subsequently, this study also focuses on understanding the concepts of TE scaffolds and their characteristics, working principle of scaffolds fabrication process. Besides this, mechanical properties, characteristics of microstructure, in vitro and in vivo analysis of the fabricated scaffolds have also been discussed in detail.

Originality/value

The review paper highlights the way forward in the area of additive manufacturing applications in TE field by following a systematic review methodology.

Details

Rapid Prototyping Journal, vol. 27 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 February 2021

Erfan Rezvani Ghomi, Saeideh Kholghi Eshkalak, Sunpreet Singh, Amutha Chinnappan, Seeram Ramakrishna and Roger Narayan

The potential implications of the three-dimensional printing (3DP) technology are growing enormously in the various health-care sectors, including surgical planning, manufacturing…

Abstract

Purpose

The potential implications of the three-dimensional printing (3DP) technology are growing enormously in the various health-care sectors, including surgical planning, manufacturing of patient-specific implants and developing anatomical models. Although a wide range of thermoplastic polymers are available as 3DP feedstock, yet obtaining biocompatible and structurally integrated biomedical devices is still challenging owing to various technical issues.

Design/methodology/approach

Polyether ether ketone (PEEK) is an organic and biocompatible compound material that is recently being used to fabricate complex design geometries and patient-specific implants through 3DP. However, the thermal and rheological features of PEEK make it difficult to process through the 3DP technologies, for instance, fused filament fabrication. The present review paper presents a state-of-the-art literature review of the 3DP of PEEK for potential biomedical applications. In particular, a special emphasis has been given on the existing technical hurdles and possible technological and processing solutions for improving the printability of PEEK.

Findings

The reviewed literature highlighted that there exist numerous scientific and technical means which can be adopted for improving the quality features of the 3D-printed PEEK-based biomedical structures. The discussed technological innovations will help the 3DP system to enhance the layer adhesion strength, structural stability, as well as enable the printing of high-performance thermoplastics.

Originality/value

The content of the present manuscript will motivate young scholars and senior scientists to work in exploring high-performance thermoplastics for 3DP applications.

Details

Rapid Prototyping Journal, vol. 27 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 August 2022

Ming Jiang, Mengyang Shi, Jiamao Li, Juan Liu, Lei Zhang, Jian Qin, Yongtao Jiu, Bin Tang and Dong Xu

This paper aims to study the effects of MnO2 on the ZnO–Bi2O3-based varistor prepared via flash sintering (FS)

Abstract

Purpose

This paper aims to study the effects of MnO2 on the ZnO–Bi2O3-based varistor prepared via flash sintering (FS)

Design/methodology/approach

MnO2-doped ZnO–Bi2O3-based varistors were successfully prepared by the FS with a step-wise increase of the .current in 60 s at the furnace temperature <750°C under the direct current electric field of 300 V cm−1. The FS process, microstructure and the electrical performance of ZnO–Bi2O3-based varistors were systematically investigated.

Findings

The doping of MnO2 significantly decreased the onset temperature of FS and improved the electrical performance of FS ZnO varistor ceramic. The sample with 0.5 mol% MnO2 doping shows the highest improvement, with the nonlinear coefficient of 18, the leakage current of 16.82 µA, the threshold voltage of 459 V/mm and the dielectric constant of 1,221 at 1 kHz.

Originality/value

FS is a wonderful technology to enhance ZnO varistors for its low energy consumption, and a short sintering time can reduce grain growth and inhabit Bi2O3 volatilize, yet few research studies work on that. In this research, the authors analyzed the FS process and improved the electrical characteristics through MnO2 doping.

Details

Microelectronics International, vol. 39 no. 4
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 10 of 15