Search results

1 – 10 of over 41000
Article
Publication date: 1 April 1993

L. Guan, C. Pusarla, G. Halkias and A. Christou

As speed and complexity of electronic systems increase, the interconnect density has become the critical limitation to the performance of electrical systems. The performance of…

Abstract

As speed and complexity of electronic systems increase, the interconnect density has become the critical limitation to the performance of electrical systems. The performance of computing and switching systems can be increased by optimizing the interconnect density and throughput. At the board to board level, electrical interconnects at high speeds require a bulky and expensive backplane. At the chip to chip area, the allocation of interconnects limits the performance of the chips. Electrical lossy lines limit the maximum interconnect distance due to reflections, risetime degradation, increased delay, attenuation and cross talk . Optical interconnects present the possibility of solving the interconnect problems by potentially achieving a high bandwidth and high volume density of channels. At high data rates (greater than 1 Gb/s) several channels may operate with negligible mutual interference.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 12 no. 4
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 February 2001

K. Groth, F. Heidenfelder and R. Holinski

In electrical motors electrical energy is transformed into mechanical energy or vice versa. Electrical energy has to be transferred from a stationary component into a moving one…

Abstract

In electrical motors electrical energy is transformed into mechanical energy or vice versa. Electrical energy has to be transferred from a stationary component into a moving one, which is done by a copper commutator in sliding contact with carbon brushes. Wear occurs at surfaces of both components during dry sliding. To reduce friction and wear rate, solid lubricants are added to the carbon brush compositions. It was observed that, during sliding, a solid lubricant film is formed on the surface of the copper commutator. This transfer film has a limited life. After failure of the layer a new film is formed from the reservoir of the carbon brushes. Various solid lubricants in carbon brushes were tested. It was found that certain solids form very thin layers with good adhesion on commutator surfaces, which improves tribological performance of both moving components. In particular, wear rate, friction and noise are reduced significantly. This resulted in much longer service life of electrical motors for automotive applications.

Details

Industrial Lubrication and Tribology, vol. 53 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 24 June 2019

Adrian Młot and Marian Łukaniszyn

Analysis of test data monitored for a number of electric machines from the low volume production line can lead to useful conclusions. The purpose of this paper is to trace the…

Abstract

Purpose

Analysis of test data monitored for a number of electric machines from the low volume production line can lead to useful conclusions. The purpose of this paper is to trace the machine performance to find quality-related issues and/or identify assembly process ones. In this paper, the monitoring of experimental data is related to the axial flux motor (AFM) used in hybrid electric vehicle (HEV) and in electric vehicle (EV) traction motors in the global automobile market.

Design/methodology/approach

Extensive data analyses raised questions like what could be the causes of possible performance deterioration of the AFM and how many electric motors may not pass requirements during operation tests. In small and medium research units of AFM for HEV or EV, engineers came across a number of serious issues that must be resolved. A number of issues can be eliminated by implementing methods for reducing the number of failing AFMs. For example, improving the motor assembly precision leads to reduction of the machine parameters deterioration.

Findings

Assembly tolerances on electric motor characteristics should be investigated during motor design. The presented measurements can be usable and can point out the weakest parts of the motor that can be a reason for the reduced efficiency and/or lifetime of the AFM. Additionally, the paper is addressed to electric motor engineers designing and/or investigating electric AFMs.

Originality/value

Performance of AFM was monitored for a number of identical motors from low volume production line. All tested motors were operated continuously for a long period of time and the tests were repeated every few weeks for half a year to check the reliability of motor design and indicate how much the motor parameters may change. The final results point how many motors fail the requirements of motor performance. A few batches of AFM were selected for testing. Each batch represents a different size (nominal power) of the same type of AFM.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 April 1999

Panayota Vassiliou and Constantine T. Dervos

In this work, commercial silver metal contacts welded on top of silver plated brass or brass substrates have been exposed to air rich in NaCl. Scanning electron microscopy and…

Abstract

In this work, commercial silver metal contacts welded on top of silver plated brass or brass substrates have been exposed to air rich in NaCl. Scanning electron microscopy and energy dispersive analysis of the exposed contact surfaces were performed to identify the corrosion by‐products on top of the silver contacts, suspending wafers, and welding materials. Surface corrosion products were mainly found to consist of small spherules of Cu‐Zn or Ag‐Cu compounds which cover the surface of the contact proper with low adhesion properties. They mainly originate from the underplating wafer or welding materials. Electrical characterization of the contacting materials was based on dc temperature overheat tests, current switching cycle tests, and energy storage during ac current excitation. The experimental results display that the operating environment is indeed a very significant parameter determining the overall performance of the electrical contacts. New design rules as well as material selection properties may have to be systematically considered to allow for electrochemical induced degradation in saline operating environments.

Details

Anti-Corrosion Methods and Materials, vol. 46 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 August 1996

J. Liu, K. Boustedt and Z. Lai

Electronic packaging is increasingly becoming a vital part of the electronics industry, representing a keybarrier to cost reduction and performance improvement. Of all the…

237

Abstract

Electronic packaging is increasingly becoming a vital part of the electronics industry, representing a key barrier to cost reduction and performance improvement. Of all the packaging methods, flip‐chip technology offers, up to now, the highest packaging density and best electrical performance. In this paper, flip‐chip test design considerations, process development and driving forces for adhesive joining and soldering flip‐chip processes will be given. Reliability test results of flip‐chip interconnection technology using conductive adhesive joining will also be presented. The electrical contact nature of the adhesive joint will be elaborated in the light of continuous and static electrical resistance measurement. Future research work directions in flip‐chip joining using eutectic solder and conductive adhesives on flexible circuits will also be discussed.

Details

Circuit World, vol. 22 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 January 1995

K. Gilleo

The electronics assembly industry has fortunately rediscovered conductive adhesives as the search for lead‐free joining materials and improved performance intensifies. Although…

Abstract

The electronics assembly industry has fortunately rediscovered conductive adhesives as the search for lead‐free joining materials and improved performance intensifies. Although these intrinsically clean bonding agents are often first sought for their favourable environmental attributes, many are surprised to find that conductive adhesives can solve old and new problems. Today, new polymer solders for SMT allow low temperature processing, finer pitch assembly and wider processing latitude while providing compatibility with a very much larger range of materials than solder. State‐of‐the‐art adhesives are oxide‐tolerant and absolutely no fluxing or cleaning is required. Adhesives work where solder cannot be used. What's more, polymer‐based solder alternatives can run on existing SMT lines — no new equipment is needed. Z‐axis, or anisotropic, bonding agents are uni‐directional conductive materials that solve fine pitch interconnect problems in several areas. The anisotropics now dominate the flat panel interconnect field. Nearly every LCD and other flat panel display is connected with a polymer adhesive. The Z‐axis adhesives are also beginning to enable high density multilayer circuits and MCMs to be built more effectively. Finally, Z‐axis appears to offer the simplest and most cost‐effective means for flip chip bonding. However, special equipment is required. The paper compares the metallurgical solder joint, the present de facto standard, with the polymer composite bond to highlight similarities and important differences. All types of conductive adhesives are discussed including the latest — Area Array Z‐axis types. Bonding materials, assembly processes and performance are also covered.

Details

Soldering & Surface Mount Technology, vol. 7 no. 1
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 30 September 2014

Christopher Perullo and Dimitri Mavris

The purpose of this study is to examine state-of-the-art in hybrid-electric propulsion system modeling and suggest new methodologies for sizing such advanced concepts. Many…

1300

Abstract

Purpose

The purpose of this study is to examine state-of-the-art in hybrid-electric propulsion system modeling and suggest new methodologies for sizing such advanced concepts. Many entities are involved in the modelling and design of hybrid electric aircraft; however, the highly multidisciplinary nature of the problem means that most tools focus heavily on one discipline and over simplify others to keep the analysis reasonable in scope. Correctly sizing a hybrid-electric system requires knowledge of aircraft and engine performance along with a working knowledge of electrical and energy storage systems. The difficulty is compounded by the multi-timescale dynamic nature of the problem. Furthermore, the choice of energy management in a hybrid electric system presents multiple degrees of freedom, which means the aircraft sizing problem now becomes not just a root-finding exercise, but also a constrained optimization problem.

Design/methodology/approach

The hybrid electric vehicle sizing problem can be sub-divided into three areas: modelling methods/fidelity, energy management and optimization technique. The literature is reviewed to find desirable characteristics and features of each area. Subsequently, a new process for sizing a new hybrid electric aircraft is proposed by synthesizing techniques from model predictive control and detailed conceptual design modelling. Elements from model predictive control and concurrent optimization are combined to formulate a new structure for the optimization of the sizing and energy management of future aircraft.

Findings

While the example optimization formulation provided is specific to a hybrid electric concept, the proposed structure is general enough to be adapted to any vehicle concept which contains multiple degrees of control freedom that can be optimized continuously throughout a mission.

Originality/value

The proposed technique is novel in its application of model predictive control to the conceptual design phase.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 February 1992

W. Delbare, L. Vandam, J. Vandewege, J. Verbeke and M. Fitzgibbon

The paper describes a new electro‐optical board technology, based on the discrete wiring principle. Isolated copper wires are embedded in the circuit board to realise the…

Abstract

The paper describes a new electro‐optical board technology, based on the discrete wiring principle. Isolated copper wires are embedded in the circuit board to realise the electrical interconnections. Glass optical fibres are embedded to obtain optical interconnections. The technology allows for crossovers and for electrical and optical interconnections on one layer of interconnection. As the technology can be applied on the level of package or multichip module, circuit board and backpanel, it has the ability to offer a complete solution for chip to chip electrical and optical interconnections. The paper will describe the basic manufacturing technology of the boards. The benefits of the technology from a system designer's viewpoint will be addressed. The problem of coupling light in and out of the embedded optical fibres will be discussed and the realisation of a first on‐board optical link via embedded optical fibres will be described.

Details

Circuit World, vol. 18 no. 3
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 7 November 2022

Rajamohana Kuselan and Venkatesan Sundharajan

This study aims to extend the driving range by on-board charging with use of photovoltaic (PV) source, avoiding the dependency on the grid supply and energy storage system in…

Abstract

Purpose

This study aims to extend the driving range by on-board charging with use of photovoltaic (PV) source, avoiding the dependency on the grid supply and energy storage system in addition to that reduce the conversion complexity influenced on converter section of electric vehicle (EV) system.

Design/methodology/approach

This paper proposed a PV fed integrated converter topology called integrated single-input multi-output (I-SIMO) converter with enriched error tolerant fuzzy logic controller (EET-FLC) based control technique to regulate the speed of brushless direct current motor drive. I-SIMO converter provides both direct current (DC) and alternating current (AC) outputs from a single DC input source depending on the operation mode. It comprises two modes of operation, act as DC–DC converter in vehicle standby mode and DC–AC converter in vehicles driving mode.

Findings

The use of PV panels in the vehicle helps to reduce dependence of grid supply as well as vehicle’s batteries. The proposed topology has to remove the multiple power conversion stages in EV system, reduce components count and provide dual outputs for enhancement of performance of EV system.

Originality/value

The proposed topology leads to reduction of switching losses and stresses across the components of the converter and provides reduction in system complexity and overall expenditure. So, it enhances the converter reliability and also improves the efficiency. The converter provides ripple-free output voltage under dynamic load condition. The performance of EET-FLC is studied by taking various performance measures such as rise time, peak time, settling time and peak overshoot and compared with conventional control designs.

1 – 10 of over 41000