Search results

1 – 10 of 12
Article
Publication date: 30 November 2023

Shi Yin, Zengying Gao and Tahir Mahmood

The aim of this study is to (1) construct a standard framework for assessing the capability of bioenergy enterprises' digital green innovation partners; (2) quantify the choice of…

Abstract

Purpose

The aim of this study is to (1) construct a standard framework for assessing the capability of bioenergy enterprises' digital green innovation partners; (2) quantify the choice of partners for digital green innovation by bioenergy enterprises; (3) propose based on a dual combination empowerment niche digital green innovation field model.

Design/methodology/approach

Fuzzy set theory is combined into field theory to investigate resource complementarity. The successful application of the model to a real case illustrates how the model can be used to address the problem of digital green innovation partner selection. Finally, the standard framework and digital green innovation field model can be applied to the practical partner selection of bioenergy enterprises.

Findings

Digital green innovation technology of superposition of complementarity, mutual trust and resources makes the digital green innovation knowledge from partners to biofuels in the enterprise. The index rating system included eight target layers: digital technology innovation level, bioenergy technology innovation level, bioenergy green level, aggregated digital green innovation resource level, bioenergy technology market development ability, co-operation mutual trust and cooperation aggregation degree.

Originality/value

This study helps to (1) construct the evaluation standard framework of digital green innovation capability based on the dual combination empowerment theory; (2) develop a new digital green innovation domain model for bioenergy enterprises to select digital green innovation partners; (3) assist bioenergy enterprises in implementing digital green innovation practices.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 21 December 2023

Majid Rahi, Ali Ebrahimnejad and Homayun Motameni

Taking into consideration the current human need for agricultural produce such as rice that requires water for growth, the optimal consumption of this valuable liquid is…

Abstract

Purpose

Taking into consideration the current human need for agricultural produce such as rice that requires water for growth, the optimal consumption of this valuable liquid is important. Unfortunately, the traditional use of water by humans for agricultural purposes contradicts the concept of optimal consumption. Therefore, designing and implementing a mechanized irrigation system is of the highest importance. This system includes hardware equipment such as liquid altimeter sensors, valves and pumps which have a failure phenomenon as an integral part, causing faults in the system. Naturally, these faults occur at probable time intervals, and the probability function with exponential distribution is used to simulate this interval. Thus, before the implementation of such high-cost systems, its evaluation is essential during the design phase.

Design/methodology/approach

The proposed approach included two main steps: offline and online. The offline phase included the simulation of the studied system (i.e. the irrigation system of paddy fields) and the acquisition of a data set for training machine learning algorithms such as decision trees to detect, locate (classification) and evaluate faults. In the online phase, C5.0 decision trees trained in the offline phase were used on a stream of data generated by the system.

Findings

The proposed approach is a comprehensive online component-oriented method, which is a combination of supervised machine learning methods to investigate system faults. Each of these methods is considered a component determined by the dimensions and complexity of the case study (to discover, classify and evaluate fault tolerance). These components are placed together in the form of a process framework so that the appropriate method for each component is obtained based on comparison with other machine learning methods. As a result, depending on the conditions under study, the most efficient method is selected in the components. Before the system implementation phase, its reliability is checked by evaluating the predicted faults (in the system design phase). Therefore, this approach avoids the construction of a high-risk system. Compared to existing methods, the proposed approach is more comprehensive and has greater flexibility.

Research limitations/implications

By expanding the dimensions of the problem, the model verification space grows exponentially using automata.

Originality/value

Unlike the existing methods that only examine one or two aspects of fault analysis such as fault detection, classification and fault-tolerance evaluation, this paper proposes a comprehensive process-oriented approach that investigates all three aspects of fault analysis concurrently.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 1 June 2023

Ibrahim M. Hezam, Anand Kumar Mishra, Dragan Pamucar, Pratibha Rani and Arunodaya Raj Mishra

This paper develops a decision-analysis model to prioritize and select the site to establish a new hospital over different indicators such as cost, market conditions…

Abstract

Purpose

This paper develops a decision-analysis model to prioritize and select the site to establish a new hospital over different indicators such as cost, market conditions, environmental factors, government factors, locations and demographics. In this way, an integrated model is proposed under the intuitionistic fuzzy information (IFI), the standard deviation (SD), the rank-sum (RS) and the measurement of alternatives and ranking using the compromise solution (MARCOS) approach for ranking hospital sites (HSs).

Design/methodology/approach

The IF-SD-RS model is presented to obtain the combined weight with the objective and subjective weights of diverse sub-criteria and indicators for ranking sites to establish the hospital. The IF-MARCOS model is discussed to prioritize the various sites to establish the hospital over several crucial indicators and sub-criteria.

Findings

The authors implement the developed model on a case study of HSs assessment for the construction of new hospital. In this regard, inclusive set of 6 key indicators and 18 sub-criteria are considered for the evaluation of HSs. This study distinguished that HS (h2) with combined utility function 0.737 achieves highest rank compared to the other three sites for the given information. Sensitivity analysis is discussed with different parameter values of sub-criteria to examine how changes in weight parameter ratings of the sub-criteria affect the prioritization of the options. Finally, comparative discussion is made with the diverse extant models to show the reasonability of the developed method.

Originality/value

This study aims to develop an original hybrid weighting tool called the IF-SD-RS model with the integration of IF-SD and IF-RS approaches to find the indicators' weights for prioritizing HSs. The developed integrated weighting model provides objective weight by IF-SD and subjective weight with the IF-RS model. The model presented in the paper deals with a consistent multi-attribute decision analysis (MADA) concerning the relations between indicators and sub-criteria for choosing the appropriate options using the developed IF-SD-RS-MARCOS model.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 24 April 2023

Misagh Rahbari, Alireza Arshadi Khamseh and Yaser Sadati-Keneti

The Russia–Ukraine war has disrupted the wheat supply worldwide. Given that wheat is one of the most important agri-food products in the world, it is necessary to pay attention to…

Abstract

Purpose

The Russia–Ukraine war has disrupted the wheat supply worldwide. Given that wheat is one of the most important agri-food products in the world, it is necessary to pay attention to the wheat supply chain during the global crises. The use of resilience strategies is one of the solutions to face the supply chain disruptions. In addition, there is a possibility of multiple crises occurring in global societies simultaneously.

Design/methodology/approach

In this research, the resilience strategies of backup suppliers (BS) and inventory pre-prepositioning (IP) were discussed in order to cope with the wheat supply chain disruptions. Furthermore, the p-Robust Scenario-based Stochastic Programming (PRSSP) approach was used to optimize the wheat supply chain under conditions of disruptions from two perspectives, feasibility and optimality.

Findings

After implementing the problem of a real case in Iran, the results showed that the use of resilience strategy reduced costs by 9.33%. It was also found that if resilience strategies were used, system's flexibility and decision-making power increased. Besides, the results indicated that if resilience strategies were used and another crisis like the COVID-19 pandemic occurred, supply chain costs would increase less than when resilience strategies were not used.

Originality/value

In this study, the design of the wheat supply chain was discussed according to the wheat supply disruptions due to the Russia–Ukraine war and its implementation on a real case. In the following, various resilience strategies were used to cope with the wheat supply chain disruptions. Finally, the effect of the COVID-19 pandemic on the wheat supply chain in the conditions of disruptions caused by the Russia–Ukraine war was investigated.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 8 June 2023

Ibrahim M. Hezam, Debananda Basua, Arunodaya Raj Mishra, Pratibha Rani and Fausto Cavallaro

Achieving a zero-carbon city requires a long-term strategic perspective. The authors propose a decision-making model which would take into account the economic, environmental and…

Abstract

Purpose

Achieving a zero-carbon city requires a long-term strategic perspective. The authors propose a decision-making model which would take into account the economic, environmental and social impacts for prioritizing the zero-carbon measures for sustainable urban transportation.

Design/methodology/approach

An integrated intuitionistic fuzzy gained and lost dominance score (IF-GLDS) model is introduced based on intuitionistic fuzzy Yager weighted aggregation (IFYWA) operators and proposed weight-determining IF-SPC procedure. In addition, a weighting tool is presented to obtain the weights of decision experts. Further, the feasibility and efficacy of developed IF-SPC-GLDS model is implemented on a multi-criteria investment company selection problem under IFS context.

Findings

The results of the developed model, “introducing zero-emission zones” should be considered as the first measure to implement. The preference of this initiative offers sustainable transport in India to achieve a zero-carbon transport by having the greatest impact on the modal shift from cars to sustainable mobility modes with a lower operational and implementation cost as well as having greater public support. The developed model utilized can be relocated to other smart cities which aim to achieve a zero-carbon transport. Sensitivity and comparative analyses are discussed to reveal the robustness of obtained result. The outcomes show the feasibility of the developed methodology which yields second company as the suitable choice, when compared to and validated using the other MCDA methods from the literature, including TOPSIS, COPRAS, WASPAS and CoCoSo with intuitionistic fuzzy information.

Originality/value

A new intuitionistic fuzzy symmetry point of criterion (IF-SPC) approach is presented to find weights of criteria under IFSs setting. Then, an IF-GLDS model is introduced using IFYWA operators to rank the options in the realistic multi-criteria decision analysis (MCDA) procedure. For this purpose, the IFYWA operators and their properties are developed to combine the IFNs. These operators can offer a flexible way to deal with the realistic MCDA problems with IFS context.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 16 May 2023

Muhammad Shoaib, Shengzhong Zhang, Hassan Ali, Muhammad Azeem Akbar, Muhammad Hamza and Waheed Ur Rehman

This study aims to identify and prioritize the challenges to adopting blockchain in supply chain management and to make its taxonomic model. Moreover, validate whether these…

Abstract

Purpose

This study aims to identify and prioritize the challenges to adopting blockchain in supply chain management and to make its taxonomic model. Moreover, validate whether these challenging factors exist in the real world and, if they exist, then in what percentage.

Design/methodology/approach

This research adopted the fuzzy best-worst method (F-BWM), which integrates fuzzy set theory with the best-worst method to identify and prioritize the prominent challenges of the blockchain-based supply chain by developing a weighted multi-criteria model.

Findings

A total of 20 challenges (CH's) were identified. Lack of storage capacity/scalability and lack of data privacy challenges were found as key challenges. The findings of this study will provide a robust framework of the challenges that will assist academic researchers and industry practitioners in considering the most significant category concerning their working area.

Practical implications

Blockchain provides the best solution for tracing and tracking where RFID has not succeeded. It can improve quality management in a supply chain network by improving standards and speeding up operations. For inventory management, blockchain provides transparency of documentation for both parties within no time.

Originality/value

To the best of the authors' knowledge, no previous research has adopted the fuzzy best-worst method to prioritize the identified challenges of blockchain implementation in the supply chain. Moreover, no study provides a taxonomic model for the challenges of implementing a blockchain-based supply chain.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 24 October 2023

Zijing Ye, Huan Li and Wenhong Wei

Path planning is an important part of UAV mission planning. The main purpose of this paper is to overcome the shortcomings of the standard particle swarm optimization (PSO) such…

Abstract

Purpose

Path planning is an important part of UAV mission planning. The main purpose of this paper is to overcome the shortcomings of the standard particle swarm optimization (PSO) such as easy to fall into the local optimum, so that the improved PSO applied to the UAV path planning can enable the UAV to plan a better quality path.

Design/methodology/approach

Firstly, the adaptation function is formulated by comprehensively considering the performance constraints of the flight target as well as the UAV itself. Secondly, the standard PSO is improved, and the improved particle swarm optimization with multi-strategy fusion (MFIPSO) is proposed. The method introduces class sigmoid inertia weight, adaptively adjusts the learning factors and at the same time incorporates K-means clustering ideas and introduces the Cauchy perturbation factor. Finally, MFIPSO is applied to UAV path planning.

Findings

Simulation experiments are conducted in simple and complex scenarios, respectively, and the quality of the path is measured by the fitness value and straight line rate, and the experimental results show that MFIPSO enables the UAV to plan a path with better quality.

Originality/value

Aiming at the standard PSO is prone to problems such as premature convergence, MFIPSO is proposed, which introduces class sigmoid inertia weight and adaptively adjusts the learning factor, balancing the global search ability and local convergence ability of the algorithm. The idea of K-means clustering algorithm is also incorporated to reduce the complexity of the algorithm while maintaining the diversity of particle swarm. In addition, the Cauchy perturbation is used to avoid the algorithm from falling into local optimum. Finally, the adaptability function is formulated by comprehensively considering the performance constraints of the flight target as well as the UAV itself, which improves the accuracy of the evaluation model.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 23 May 2023

Dezhi Li, Lugang Yu, Guanying Huang, Shenghua Zhou, Haibo Feng and Yanqing Wang

To propose a new investment-income valuation model by real options approach (ROA) for old community renewal (OCR) projects, which could help the government attract private…

Abstract

Purpose

To propose a new investment-income valuation model by real options approach (ROA) for old community renewal (OCR) projects, which could help the government attract private capital's participation.

Design/methodology/approach

The new model is proposed by identifying the types of options private capital has in the OCR project, selecting the option model most suitable for private capital investment decisions, improving the valuation model through the triangular fuzzy numbers to take into account the uncertainty and flexibility, and demonstrating the feasibility of the calculation model through an actual OCR project case.

Findings

The new model can valuate OCR projects more accurately based on considering uncertainty and flexibility, compared with conventional methods that often underestimate the value of OCR projects.

Practical implications

The investment-income of OCR projects shall be re-valuated from the lens of real options, which could help reveal more real benefits beyond the capital growth of OCR projects, enable the government to attract private capital's investment in OCR, and alleviate government fiscal pressure.

Originality/value

The proposed OCR-oriented investment-income valuation model systematically analyzes the applicability of real option value (ROV) to OCR projects, innovatively integrates the ROV and the net present value (NPV) as expanded net present value (ENPV), and accurately evaluate real benefits in comparison with existing models. Furthermore, the newly proposed model holds the potential to be transferred to various social welfare projects as a tool to attract private capital's participation.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 16 January 2024

Aswin Alora and Himanshu Gupta

The purpose of this paper is to identify and prioritise supply chain finance (SCF) adoption enablers and develop a novel comprehensive framework to select supplier firms based on…

Abstract

Purpose

The purpose of this paper is to identify and prioritise supply chain finance (SCF) adoption enablers and develop a novel comprehensive framework to select supplier firms based on their SCF adoption capability.

Design/methodology/approach

The study deploys a three-phase method to identify and prioritise SCF adoption enablers, followed by developing a model to select suppliers according to their SCF adoption capability. An extensive literature review, followed by a Delphi approach-based expert interview, has been used to finalise the enablers. Using the Best Worst Method and the VIsekriterijumsko KOmpromisno Rangiranje technique, a supplier selection model has been developed in the context of a case company.

Findings

The financial health and technological advancement variables received the top priority, followed by collaborative efficiency, whereas the human resources and organisational variables received the slightest significance. A supplier selection framework has also been developed by using the adoption capability of these factors by the supplier partners. In this study’s model, Supplier 4 exhibited better SCF adoption capability and received the top priority.

Research limitations/implications

Manufacturing supply chains in a developing country are the scope of the current study. Extensive future studies are required to derive a global consensus.

Practical implications

The proposed framework of this study can be used to select supplier firms based on their SCF adoption capability. Policymakers can emphasise the most critical enablers of SCF adoption to assist small supplier firms to be a part of the advanced global supply chains.

Originality/value

The current study established a novel comprehensive framework for supplier selection based on the Supply Chain Finance adoption capability of MSME supplier firms.

Details

Journal of Business & Industrial Marketing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0885-8624

Keywords

Article
Publication date: 22 March 2024

Mohd Mustaqeem, Suhel Mustajab and Mahfooz Alam

Software defect prediction (SDP) is a critical aspect of software quality assurance, aiming to identify and manage potential defects in software systems. In this paper, we have…

Abstract

Purpose

Software defect prediction (SDP) is a critical aspect of software quality assurance, aiming to identify and manage potential defects in software systems. In this paper, we have proposed a novel hybrid approach that combines Gray Wolf Optimization with Feature Selection (GWOFS) and multilayer perceptron (MLP) for SDP. The GWOFS-MLP hybrid model is designed to optimize feature selection, ultimately enhancing the accuracy and efficiency of SDP. Gray Wolf Optimization, inspired by the social hierarchy and hunting behavior of gray wolves, is employed to select a subset of relevant features from an extensive pool of potential predictors. This study investigates the key challenges that traditional SDP approaches encounter and proposes promising solutions to overcome time complexity and the curse of the dimensionality reduction problem.

Design/methodology/approach

The integration of GWOFS and MLP results in a robust hybrid model that can adapt to diverse software datasets. This feature selection process harnesses the cooperative hunting behavior of wolves, allowing for the exploration of critical feature combinations. The selected features are then fed into an MLP, a powerful artificial neural network (ANN) known for its capability to learn intricate patterns within software metrics. MLP serves as the predictive engine, utilizing the curated feature set to model and classify software defects accurately.

Findings

The performance evaluation of the GWOFS-MLP hybrid model on a real-world software defect dataset demonstrates its effectiveness. The model achieves a remarkable training accuracy of 97.69% and a testing accuracy of 97.99%. Additionally, the receiver operating characteristic area under the curve (ROC-AUC) score of 0.89 highlights the model’s ability to discriminate between defective and defect-free software components.

Originality/value

Experimental implementations using machine learning-based techniques with feature reduction are conducted to validate the proposed solutions. The goal is to enhance SDP’s accuracy, relevance and efficiency, ultimately improving software quality assurance processes. The confusion matrix further illustrates the model’s performance, with only a small number of false positives and false negatives.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 10 of 12