Search results

1 – 10 of 16
Article
Publication date: 1 September 2017

Xuhui Wang, Kewei Liu, Kai Wang, Jian Gong, Yanjun Wang and Yajiang Fan

Urban parks play a key role in recreational activities, public health, and ecosystem services in urban areas. Using GIS and Fragstats, this study investigated the spatiotemporal…

Abstract

Urban parks play a key role in recreational activities, public health, and ecosystem services in urban areas. Using GIS and Fragstats, this study investigated the spatiotemporal dynamics of urban parks in Xi'an, China from 1949 to 2015 and the corresponding driving forces. The results show that the number and area of parks in Xi'an increased constantly during this period, especially from 2000 to 2015. Up to 2015, small green spaces, usually adjacent to streets, occupied the largest proportion among all types of parks. Archaeological parks were the largest in total area, but wetland parks were leading in average size of a single park. The density of parks was negatively correlated with their distance to the Clock Tower at the center of Xi'an. The dynamics of urban parks in highly urbanized areas were significantly different from that of their counterparts in suburban areas. Driving forces such as urban planning, urbanization and green space policies, and milestone events in the city's development jointly had a great effect on the distribution of parks in Xi'an. The research outcomes will support the upcoming Green Space Planning of Xi'an and benefit the pursuit of sustainability and human wellbeing.

Details

Open House International, vol. 42 no. 3
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 15 September 2023

Zengli Wang, Qingyang Wang, Muming Hao, Xiaoying Li and Kewei Liu

The purpose of this study is to investigate the sealing performance of S-CO2 dry gas seals (DGSs) by considering the effects of pressure-induced deformation, thermal deformation…

Abstract

Purpose

The purpose of this study is to investigate the sealing performance of S-CO2 dry gas seals (DGSs) by considering the effects of pressure-induced deformation, thermal deformation and coupling deformation.

Design/methodology/approach

A hydrodynamic lubrication flow model of S-CO2 DGS was established, and the model was solved using the finite difference and finite element methods. The pressure-induced deformation and thermal deformation of the sealing ring, as well as the sealing performance under the effects of pressure-induced deformation, thermal deformation and coupling deformation, were obtained.

Findings

The deformation of the sealing ring is mainly thermal deformation. The influence of pressure-induced deformation on leakage and gas film stiffness is greater than that of thermal deformation and coupling deformation. However, thermal deformation has a greater impact on friction torque and minimum film thickness than pressure-induced deformation and coupling deformation. The influence of deformations on sealing performance is important.

Originality/value

The sealing performance of S-CO2 DGSs was analyzed considering the effect of pressure-induced deformation, thermal deformation and coupling deformation, which can provide a theoretical basis for S-CO2 DGS optimization design.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2023-0120/

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 28 December 2021

Karthie S., Zuvairiya Parveen J., Yogeshwari D. and Venkadeshwari E.

The purpose of this paper is to present the design of a compact microstrip bandpass filter (BPF) in dual-mode configuration loaded with cross-loop and square ring slots on a…

104

Abstract

Purpose

The purpose of this paper is to present the design of a compact microstrip bandpass filter (BPF) in dual-mode configuration loaded with cross-loop and square ring slots on a square patch resonator for C-band applications.

Design/methodology/approach

In the proposed design, the dual-mode response for the filter is realized with two transmission zeros (TZs) by the insertion of a perturbation element at the diagonal corner of the square patch resonator with orthogonal feed lines. Such TZs at the edges of the passband result in better selectivity for the proposed BPF. Moreover, the cross-loop and square ring slots are etched on a square patch resonator to obtain a miniaturized BPF.

Findings

The proposed dual-mode microstrip filter fabricated in RT/duroid 6010 substrate using PCB technology has a measured minimum insertion loss of 1.8 dB and return loss better than 24.5 dB with a fractional bandwidth (FBW) of 6.9%. A compact size of 7.35 × 7.35 mm2 is achieved for the slotted patch resonator-based dual-mode BPF at the center frequency of 4.76 GHz. As compared with the conventional square patch resonator, a size reduction of 61% is achieved with the proposed slotted design. The feasibility of the filter design is confirmed by the good agreement between the measured and simulated responses. The performance of the proposed filter structure is compared with other dual-mode filter works.

Originality/value

In the proposed work, a compact dual-mode BPF is reported with slotted structures. The conventional square patch resonator is deployed with cross-loop and square ring slots to design a dual-mode filter with a square perturbation element at its diagonal corner. The proposed filter exhibits compact size and favorable performance compared to other dual-mode filter works reported in literature. The aforementioned design of the dual-mode BPF at 4.76 GHz is suitable for applications in the lower part of the C-band.

Details

Microelectronics International, vol. 39 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 20 October 2014

Xiang Ren, Qingwei Zhang, Kewei Liu, Ho-lung Li and Jack G. Zhou

The purpose of this paper is establishing a general mathematical model and theoretical design rules for 3D printing of biomaterials. Additive manufacturing of biomaterials…

1023

Abstract

Purpose

The purpose of this paper is establishing a general mathematical model and theoretical design rules for 3D printing of biomaterials. Additive manufacturing of biomaterials provides many opportunities for fabrication of complex tissue structures, which are difficult to fabricate by traditional manufacturing methods. Related problems and research tasks are raised by the study on biomaterials’ 3D printing. Most researchers are interested in the materials studies; however, the corresponded additive manufacturing machine is facing some technical problems in printing user-prepared biomaterials. New biomaterials have uncertainty in physical properties, such as viscosity and surface tension coefficient. Therefore, the 3D printing process requires lots of trials to achieve proper printing parameters, such as printing layer thickness, maximum printing line distance and printing nozzle’s feeding speed; otherwise, the desired computer-aided design (CAD) file will not be printed successfully in 3D printing.

Design/methodology/approach

Most additive manufacturing machine for user-prepared bio-material use pneumatic valve dispensers or extruder as printing nozzle, because the air pressure activated valve can print many different materials, which have a wide range of viscosity. We studied the structure inside the pneumatic valve dispenser in our 3D heterogeneous printing machine, and established mathematical models for 3D printing CAD structure and fluid behaviors inside the dispenser during printing process.

Findings

Based on theoretical modeling, we found that the bio-material’s viscosity, surface tension coefficient and pneumatic valve dispenser’s dispensing step time will affect the final structure directly. We verified our mathematical model by printing of two kinds of self-prepared biomaterials, and the results supported our modeling and theoretical calculation.

Research limitations/implications

For a certain kinds of biomaterials, the mathematical model and design rules will have unique solutions to the functions and equations. Therefore, each biomaterial’s physical data should be collected and input to the model for specified solutions. However, for each user-made 3D printing machine, the core programming code can be modified to adjust the parameters, which follows our mathematical model and the related CAD design rules.

Originality

This study will provide a universal mathematical method to set up design rules for new user-prepared biomaterials in 3D printing of a CAD structure.

Details

Rapid Prototyping Journal, vol. 20 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 May 2023

Yanqi Tu, Saiyu Liu, Rongjian Shi, Shani Yang, Kewei Gao and Xiaolu Pang

The purpose of this study is to investigate the effects of the cementite morphology on the hydrogen trapping behavior in low-alloy pipeline steel.

Abstract

Purpose

The purpose of this study is to investigate the effects of the cementite morphology on the hydrogen trapping behavior in low-alloy pipeline steel.

Design/methodology/approach

In this study, the hydrogen trapping behavior in low-alloy pipeline steel was quantitatively studied by a combination of microstructural observations, electrochemical hydrogen permeation experiments and thermal desorption spectroscopy (TDS) analyses.

Findings

P-1 and P-2 steels are two samples with different microstructures. The morphology of cementite precipitates in the P-1 and P-2 steels was different. Lamellar cementite is present in P-2 steel and only granular cementite in P-1 steel, which led to a better irreversible hydrogen trapping ability of P-2 steel, which was confirmed by subsequent hydrogen permeation and TDS experiments.

Originality/value

The study of these deep hydrogen trap sites is helpful in improving the hydrogen embrittlement resistance of low-alloy pipeline steels.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 11 April 2022

Yaojie Zheng, Huili Sun, Luchun Yan, Huisheng Yang, Kewei Gao, Xiaolu Pang and Alex A. Volinsky

The purpose of this study is to investigate the effect of ferrite on hydrogen embrittlement (HE) of the 17-4PH stainless steels.

Abstract

Purpose

The purpose of this study is to investigate the effect of ferrite on hydrogen embrittlement (HE) of the 17-4PH stainless steels.

Design/methodology/approach

The effects of ferrite on HE of the 17-4PH stainless steels were investigated by observing microstructure and conducting slow-strain-rate tensile tests and hydrogen permeability tests.

Findings

The microstructure of the ferrite-bearing sample is lath martensite and banded ferrite, and the ferrite-free sample is lath martensite. After hydrogen charging, the plasticity of the two steels is significantly reduced, along with the tensile strength of the ferrite-free sample. The HE susceptibility of the ferrite-bearing sample is significantly lower than the ferrite-free steel, and the primary fracture modes gradually evolved from typical dimple to quasi-cleavage and intergranular cracking. After aging at 480°C for 4 h and hydrogen charging for 12 h, the 40.9% HE susceptibility of ferrite-bearing samples was the lowest. In addition, the hydrogen permeation tests show that ferrite is a fast diffusion channel for hydrogen, and the ferrite-bearing samples have higher effective hydrogen diffusivity and lower hydrogen concentration.

Originality/value

There are a few studies of the ferrite effect on the HE properties of martensitic precipitation hardening stainless steel.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 24 May 2022

Yaojie Zheng, Sun Huili, Luchun Yan, Xiaolu Pang, Alex A. Volinsky and Kewei Gao

High-strength martensitic steels having strong hydrogen embrittlement (HE) susceptibility and the metal carbide (MC) nanoprecipitates of microalloying elements such as Nb, V, Ti…

Abstract

Purpose

High-strength martensitic steels having strong hydrogen embrittlement (HE) susceptibility and the metal carbide (MC) nanoprecipitates of microalloying elements such as Nb, V, Ti and Mo in the steel matrix can effectively improve the HE resistance of steels. This paper aims to review the effect of MC nanoprecipitates on the HE resistance of high-strength martensitic steels.

Design/methodology/approach

In this paper, the effects of MC nanoprecipitates on the HE resistance of high-strength martensitic steels are systematically described in terms of the types of MC nanoprecipitates, the influencing factors, along with numerical simulations.

Findings

The MC nanoprecipitates, which are fine and semicoherent with the matrix, effectively improve the HE resistance of steel through the hydrogen trapping effects and microstructure optimization, but its effect on the HE resistance of steel is controlled by its size, number and distribution state.

Originality/value

This paper summarizes the effects and mechanisms of MC nanoprecipitates on HE performance of high-strength martensitic steel and provides the theoretical basis for corrosion engineers to design high-strength martensitic steels with excellent HE resistance and improve production processes.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 8 May 2023

Mengmeng Li, Jian Chen, Jingtao Sun, Long Hao, Di Wu, Jianqiu Wang and Wei Ke

The purpose of this study is to investigate the initial corrosion behavior of pure Mg, AZ31 and AZ91 alloys in phosphate buffer solution (PBS) and to characterize the features in…

Abstract

Purpose

The purpose of this study is to investigate the initial corrosion behavior of pure Mg, AZ31 and AZ91 alloys in phosphate buffer solution (PBS) and to characterize the features in corrosion type and resistance of the corrosion product layer.

Design/methodology/approach

The scanning electron microscopy, equipped with energy-dispersive spectroscopy, X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy have been used to characterize the as-corroded samples. Besides, the Mg2+ concentration in PBSs has been determined by inductively coupled plasma atomic emission spectrum.

Findings

It has been found that pure Mg suffers pit corrosion, and AZ31 initially undergoes pit corrosion and then uniform corrosion dominates with an extended immersion duration. However, AZ91 exhibits the uniform corrosion with the highest corrosion rate among the three materials. Besides, the corrosion product layer on AZ31 has the best compactness and corrosion resistance.

Originality/value

The findings add depth in understanding the corrosion of pure Mg and its alloys in PBS and also have guiding significance in exploring the effects by alloyed elements to develop new biomaterials with better performance.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 28 May 2021

M.R. Saber and M.H. Djavareshkian

In the present research, the effect of the flexible shells method in unsteady viscous flow around airfoil has been studied. In the presented algorithm, due to the interaction of…

Abstract

Purpose

In the present research, the effect of the flexible shells method in unsteady viscous flow around airfoil has been studied. In the presented algorithm, due to the interaction of the aerodynamic forces and the structural stiffness (fluid-structural interaction), a geometrical deformation as the bump is created in the area where the shock occurs. This bump causes instead of compressive waves, a series of expansion waves that produce less drag and also improve the aerodynamic performance to be formed. The purpose of this paper is to reduce wave drag throughout the flight range. By using this method, we can be more effective than recent methods throughout the flight because if there is a shock, a bump will form in that area, and if the shock does not occur, the shape of the airfoil will not change.

Design/methodology/approach

In this simulation pressure-based procedure to solve the Navier-Stokes equation with collocated finite volume formulation has been developed. For this purpose, a high-resolution scheme for fluid and structure simulation in transonic flows with an arbitrary Lagrangian-Eulerian method is considered. To simulate Navier-Stokes equations large eddy simulation model for compressible flow is used.

Findings

A new concept has been defined to reduce the transonic flow drag. To reduce drag force and increase the performance of airfoil in transonic flow, the shell can be considered flexible in the area of shock on the airfoil surface. This method refers to the use of smart materials in the aircraft wing shell.

Originality/value

The value of the paper is to develop a new approach to improve the aerodynamic performance and reduce drag force and the efficiency of the method throughout the flight. It is noticeable that the new algorithm can detect the shock region automatically; this point was disregarded in the previous studies. It is hoped that this research will open a door to significantly enhance transonic airfoil performance.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 25 November 2020

Carl Déry

This paper aims to explore various tensions related to the diffusion and reception of the New Qing History (NQH) in China, and more specifically, it aims at underlying a recurrent…

Abstract

Purpose

This paper aims to explore various tensions related to the diffusion and reception of the New Qing History (NQH) in China, and more specifically, it aims at underlying a recurrent tension within the core of this debate, between a Global and a Nationalist historical narrative.

Design/methodology/approach

The author’s focus is to analyze various texts published in China between 2006 and 2018.

Findings

The author argues that the intensity of the current debate is partly related on the one hand, to the fact that NQH undermines various aspects of China’s Nationalist teleology and territorial claims and, on the other hand, to the basic difficulty of accepting the coexistence of various historical representations that are risking to weaken contemporary’s justifications of its rising schemes.

Originality/value

The text presents an original reading of some important issues raised by the NQH debate.

Details

Social Transformations in Chinese Societies, vol. 16 no. 2
Type: Research Article
ISSN: 1871-2673

Keywords

1 – 10 of 16