Search results

21 – 30 of over 9000
Article
Publication date: 1 March 1971

John A. Millar

Although iron is one of the most abundant elements in nature, anaemia due to iron deficiency is probably the world's most common nutritional disorder. It has been estimated that…

Abstract

Although iron is one of the most abundant elements in nature, anaemia due to iron deficiency is probably the world's most common nutritional disorder. It has been estimated that 20–30% of the earth's population are affected by the disease. Since an adequate supply of iron is essential for many crucial bodily functions, this paradox of “famine in the midst of plenty” is a serious national and international health problem. In this article we shall look at the various causes of iron deficiency and its consequences, at methods of treatment, and at other nutritional aspects of iron metabolism.

Details

Nutrition & Food Science, vol. 71 no. 3
Type: Research Article
ISSN: 0034-6659

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 June 2024

David Ukwungwu, Sobhan Emadmostoufi, Uwe Reisgen and Kay Hameyer

This paper aims to analyze the influence of welding-induced mechanical stress of a magnetic core material on the performance behavior of a permanent magnet excited synchronous…

Abstract

Purpose

This paper aims to analyze the influence of welding-induced mechanical stress of a magnetic core material on the performance behavior of a permanent magnet excited synchronous machine (PMSM). Welding, interlocking, clinching and the use of adhesives are state-of-the-art packaging technologies used in the manufacturing of electrical machines. However, the packaging processes degrade the electromagnetic properties of the electric steel sheets, thereby decreasing the performance and achievable range of the electric vehicle.

Design/methodology/approach

In this paper, an approach that maps the local changes in magnetic properties due to welding induced stress with the stress values is developed. The welding process induces internal stress inside the steel sheet due to the diffusion of thermal energy into the sheets. Other effects are the changes in the micro structures of the steel sheets (grain sizes). These induced mechanical stresses lead to significant deterioration of the electromagnetic properties. They also lead to an increase in iron loss attributed to steel lamination.

Findings

A low speed (city), a high-speed (highway) and WLTC-c3 driving cycle will be used to analyze the effects of the induced stresses on the machine efficiency at the different operating conditions. A high-speed PMSM with a maximum speed of 26,000 min−1 and maximum torque of 130 Nm is designed for this study.

Originality/value

The value of this study is in the development of a local varying modeling approach that analyses the influence of weld-induced stress on the performance of electrical machines. Its originality is evident in the mapping methodology. This will enable an application dependent improvement possibilities due to the understanding of the impact of weld-induced stress on the electromagnetic properties of weld-packaged core.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 March 2019

Wei-Mon Yan, Hsu-Yang Teng, Chun-Han Li and Mohammad Ghalambaz

The electromagnetic field and cooling system of a high power switched reluctance motor (SRM) are studied numerically. The geometry of the motor and its main components are…

Abstract

Purpose

The electromagnetic field and cooling system of a high power switched reluctance motor (SRM) are studied numerically. The geometry of the motor and its main components are established using a computer-aided design software in the actual size. This study aims to evaluate the resulting thermal losses using the electromagnetic analysis of the motor.

Design/methodology/approach

In the electromagnetic analysis, the Joule’s loss in the copper wires of the coil windings and the iron losses (the eddy currents loss and the hysteresis loss) are considered. The flow and heat transfer model for the thermal analysis of the motor including the conduction in solid parts and convection in the fluid part is introduced. The magnetic losses are imported into the thermal analysis model in the form of internal heat generation in motor components. Several cooling system approaches were introduced, such as natural convection cooling, natural convection cooling with various types of fins over the motor casing, forced conviction air-cooled cooling system using a mounted fan, casing surface with and without heat sinks, liquid-cooled cooling system using the water in a channel shell and a hybrid air-cooled and liquid-cooled cooling system.

Findings

The results of the electromagnetics analysis show that the low rotational speed of the motor induces higher currents in coil windings, which in turn, it causes higher copper losses in SRM coil windings. For higher rotational speed of SRM, the core loss is higher than the copper loss is in SRM due to the higher frequency. An air-cooled cooling system is used for cooling of SRM. The results reveal when the rotational speed is at 4,000 rpm, the coil loss would be at the maximum value. Therefore, the coil temperature is about 197.9°C, which is higher than the tolerated standard temperature insulation material. Hence, the air-cooled system cannot reduce the temperature to the safe temperature limitation of the motor and guarantee the safe operation of SRM. Thus, a hybrid system of both air-cooled and liquid-cooled cooling system with mounting fins at the outer surface of the casing is proposed. The hybrid system with the liquid flow of Re = 1,500 provides a cooling power capable of safe operation of the motor at 117.2°C, which is adequate for standard insulation material grade E.

Originality/value

The electromagnetic field and cooling system of a high power SRM in the presence of a mounted fan at the rear of the motor are analyzed. The thermal analysis is performed for both of the air-cooled and liquid-cooled cooling systems to meet the cooling demands of the motor for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 April 2014

Jinlin Gong, Bassel Aslan, Frédéric Gillon and Eric Semail

The purpose of this paper is to apply some surrogate-assisted optimization techniques in order to improve the performances of a five-phase permanent magnet machine in the context…

Abstract

Purpose

The purpose of this paper is to apply some surrogate-assisted optimization techniques in order to improve the performances of a five-phase permanent magnet machine in the context of a complex model requiring computation time.

Design/methodology/approach

An optimal control of four independent currents is proposed in order to minimize the total losses with the respect of functioning constraints. Moreover, some geometrical parameters are added to the optimization process allowing a co-design between control and dimensioning.

Findings

The optimization results prove the remarkable effect of using the freedom degree offered by a five-phase structure on iron and magnets losses. The performances of the five-phase machine with concentrated windings are notably improved at high speed (16,000 rpm).

Originality/value

The effectiveness of the method allows solving the challenge which consists in taking into account inside the control strategy the eddy-current losses in magnets and iron. In fact, magnet losses are a critical point to protect the machine from demagnetization in flux-weakening region.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 August 1996

Ursula Arens

Iron is found widely in the diet, but there are many factors that affect its absorption. Haem iron, found in meat, is well absorbed whereas non‐haem iron absorption is variable…

796

Abstract

Iron is found widely in the diet, but there are many factors that affect its absorption. Haem iron, found in meat, is well absorbed whereas non‐haem iron absorption is variable, and affected by many other components in the diet. Requirements for iron are highest in women, and during infancy and adolescence. Intakes of iron in the UK are generally within the range of iron reference values; however, a sub‐group of women with particularly high requirements may benefit from supplements.

Details

Nutrition & Food Science, vol. 96 no. 4
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 27 January 2022

Martin Marco Nell, Marius Franck and Kay Hameyer

For the electromagnetic simulation of electrical machines, models with different ranges of values, levels of detail and accuracies are used. In this paper, numerical and two…

Abstract

Purpose

For the electromagnetic simulation of electrical machines, models with different ranges of values, levels of detail and accuracies are used. In this paper, numerical and two analytical models of an induction machine (IM) are analysed with respect to these aspects. The purpose of the paper is to use these analyses to discuss the suitability of the models for the simulation of various physical quantities of an IM.

Design/methodology/approach

An exemplary IM is simulated using the two-dimensional numerical finite element method, an analytical harmonic wave model (HWM) and an extended HWM. The simulation results are analyzed among themselves in terms of their level of detail and accuracy. Furthermore, the results of operating map simulations are compared with measured operating maps of the exemplary machine, and the accuracy of the simulation approaches is discussed in the context of measurement deviations and uncertainties.

Findings

The difference in the accuracy of the machine models depends on the physical quantity of interest. Therefore, the choice of the simulation method depends on the nature of the problem and the expected range of results. For modeling global machine quantities, such as mean torque or losses, analytical methods such as the HWM s are sufficient in many applications because the simulation results are within the range of measurement accuracy of current measurement systems. Analytical methods are also suitable for local flux density curves under certain conditions. However, for the simulation of the influence of local physical effects on the machine behavior and of temporally highly resolved quantities in saturated operating points, the accuracy of the analytical models decreases and the use of the finite element method becomes necessary.

Originality/value

In this paper, an extension of the HWM is used to calculate the IM, which, in contrast to the HWM, models the saturation. Furthermore, the simulation results of the different electromagnetic IM models are put into the context of the uncertainty of a measurement of several identical IMs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 August 2014

Jubin Jacob, Johannes J.H. Paulides and Elena Lomonova

The purpose of this paper is to study the performance and efficiency of two different permanent magnet (PM) machine rotor configurations under magnetic core saturation conditions…

Abstract

Purpose

The purpose of this paper is to study the performance and efficiency of two different permanent magnet (PM) machine rotor configurations under magnetic core saturation conditions.

Design/methodology/approach

Since the accuracy of conventional analytical methods is limited under saturation conditions, a finite element model of the machine is built; which is used to predict the various losses over its operating range such as eddy current, hysteresis, copper and magnet losses. Using this model, the efficiency map of the machine is derived which is used to investigate its efficiency corresponding to a heavy vehicle drive cycle. The performance of two different rotor designs are studied and the efficiency of each design is compared under the considered drive cycle.

Findings

It has also been proved that the performance advantage due to reluctance torque in the v-shaped interior PM (IPM) machine is offset by its core steel saturation at higher current/torque levels. The magnitude of iron losses in the IPM is higher than that in the surface PM (SPM) machine, however, the magnet loss in the SPM is higher than in the IPM.

Originality/value

An investigation of the performance of the IPM design in comparison with the SPM∼design under magnetic saturation conditions is not known to the authors. Hence, in this paper, it will be determined if the assumed performance advantage of the IPM over the SPM still holds true under these conditions.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 November 2008

A. Belahcen and A. Arkkio

The purpose of this paper is to find out how to model the effect of mechanical stresses on the magnetic properties of electrical steel used in electromagnetic devices and…

Abstract

Purpose

The purpose of this paper is to find out how to model the effect of mechanical stresses on the magnetic properties of electrical steel used in electromagnetic devices and especially in electrical machines. Further, the effect of these stresses on the operation of the machines should be studied.

Design/methodology/approach

The constitutive equation of the electrical steel is usually modeled as a non linear relation between the magnetic flux density and the magnetic field strength. In this research, this constitutive equation is developed to account for the mechanical stresses through a parametric relationship, the parameters of which are estimated from measurements. Further, the constitutive equation is used in a magnetomechanically coupled numerical simulation of an induction machine.

Findings

The mechanical stresses degrade the properties of the electrical steel and increase the magnetization current in electrical machines. This leads to a decrease in the efficiency of these machines.

Research limitations/implications

The effect of mechanical stresses is studied from the point of view of magnetization properties. This work does not model the effect of stresses on the specific losses of the material. Such a research is still going on.

Originality/value

The effect of mechanical stress on the magnetic properties of the materials used in electrical machines is modeled in an easy and original way, which allow for its application in numerical simulation and analysis of these machines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 August 2014

Poopak Roshanfekr, Torbjörn Thiringer, Sonja Lundmark and Mikael Alatalo

The purpose of this paper is to investigate how the dc-link voltage for the converter of a wind generator should be selected, i.e. to determine the losses in the generator and the…

Abstract

Purpose

The purpose of this paper is to investigate how the dc-link voltage for the converter of a wind generator should be selected, i.e. to determine the losses in the generator and the converter when using various dc-link voltage levels.

Design/methodology/approach

To presents the efficiency evaluation of 5 MW wind turbine generating systems, two 5 MW surface mounted permanent magnet synchronous generators (PMSG) with medium and low rated voltage is designed. A two-level transistor converter is considered for ac/dc conversion. Three different dc-link voltage levels are used. By using these voltage levels the PMSG is utilized in slightly different ways.

Findings

It is found that the system with the lower voltage machine has slightly higher annual energy efficiency compare to the higher voltage system. Furthermore, it is shown that the best choice for the dc-link voltage level is a voltage between the minimum voltage which gives the desired torque and the voltage which gives Maximum Torque Per Ampere.

Originality/value

A procedure as well as investigations with quantified results on how to find the highest complete drive system efficiency for a wind turbine application. Based on two given PMSG, the most energy-efficient dc-link voltage has been established.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

21 – 30 of over 9000