Search results

1 – 10 of over 6000
Article
Publication date: 1 March 1993

MIROSLAV RAUDENSKÝ

A method of estimating a heat transfer coefficient at the surface of a solid body is described. Knowing the ambient temperature and the temperature history at an inner point…

Abstract

A method of estimating a heat transfer coefficient at the surface of a solid body is described. Knowing the ambient temperature and the temperature history at an inner point (points) of the body, the heat transfer coefficient is computed. The inverse algorithm can respect the non‐linear nature of the task. The inverse algorithm is based on the computation of the temperature fields. Any method for unsteady state heat conduction can be used. The influence of the random errors of the input experimental data is described.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 April 2014

Zoran Andjelic

The purpose of this paper is to present a simple approach for calculation of the sensitivities in the free-form inverse design problems. The approach is based on the analogy with…

Abstract

Purpose

The purpose of this paper is to present a simple approach for calculation of the sensitivities in the free-form inverse design problems. The approach is based on the analogy with the similar tasks used in the signal-processing analysis. In the proposed case it is not required to solve an adjoint problem as in the most of the similar optimization tasks. The simulation engine used in the background is a Fast Boundary Element Method. The approach is validated on some known benchmark problems.

Design/methodology/approach

Inverse design is recognized nowadays as a crucial scientific grand challenge. Contrary to the conventional approach (“Given the structure, find the properties”) it purses a new paradigm (“Given the desired property, find the structure”). Inverse class of problems has a broad application area, from the material-, medical-, bio- to the engineering-class of problems. When dealing with the inverse design in free-form optimization of the engineering problems the typical approach is to calculate the adjoint problem. Calculation of the adjoint problem mostly requires the costly calculation of the gradients, which makes the whole optimization procedure rather expensive due to the high computational burden required for their solution.

Findings

In this paper it is proposed a novel Simple Sensitivity Approach to get in a fast way the response (sensitivity) function of the analyzed structure. The simulation engine used in the background is the Fast Boundary Element Method.

Originality/value

Novel approach for inverse design when performing the free-form optimization of engineering problems.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 August 2023

Shaoyi Liu, Song Xue, Peiyuan Lian, Jianlun Huang, Zhihai Wang, Lihao Ping and Congsi Wang

The conventional design method relies on a priori knowledge, which limits the rapid and efficient development of electronic packaging structures. The purpose of this study is to…

Abstract

Purpose

The conventional design method relies on a priori knowledge, which limits the rapid and efficient development of electronic packaging structures. The purpose of this study is to propose a hybrid method of data-driven inverse design, which couples adaptive surrogate model technology with optimization algorithm to to enable an efficient and accurate inverse design of electronic packaging structures.

Design/methodology/approach

The multisurrogate accumulative local error-based ensemble forward prediction model is proposed to predict the performance properties of the packaging structure. As the forward prediction model is adaptive, it can identify respond to sensitive regions of design space and sample more design points in those regions, getting the trade-off between accuracy and computation resources. In addition, the forward prediction model uses the average ensemble method to mitigate the accuracy degradation caused by poor individual surrogate performance. The Particle Swarm Optimization algorithm is then coupled with the forward prediction model for the inverse design of the electronic packaging structure.

Findings

Benchmark testing demonstrated the superior approximate performance of the proposed ensemble model. Two engineering cases have shown that using the proposed method for inverse design has significant computational savings while ensuring design accuracy. In addition, the proposed method is capable of outputting multiple structure parameters according to the expected performance and can design the packaging structure based on its extreme performance.

Originality/value

Because of its data-driven nature, the inverse design method proposed also has potential applications in other scientific fields related to optimization and inverse design.

Details

Soldering & Surface Mount Technology, vol. 35 no. 5
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 3 January 2017

Lucian Olteanu

The purpose of this paper is to report how the use of a direct and an inverse task gave students an opportunity to discern the structure of a distributive law that they could…

Abstract

Purpose

The purpose of this paper is to report how the use of a direct and an inverse task gave students an opportunity to discern the structure of a distributive law that they could apply to expand or to factorise algebraic expressions. The paper discusses a teaching sequence (of about 40 minutes) in a Grade 8 (14-15 year-olds) algebra class and it focusses on how the use of inverse tasks opens the dimension of variation. For instance, if the distributive law has always been used as a(b+c), factorising the expressions ab+ac means opening up the dimension of distributive law. The analysis showed that two central processes, transformation and variation, improved communication in the classroom.

Design/methodology/approach

The data used come from a longitudinal study conducted in Sweden. The methodology is grounded in educational design research. Two secondary school teachers conducted a lesson with variation theory as a guiding principle, supervised by a researcher. The relationship between teaching and learning was analysed in the enacted object of learning. The critical aspect for students’ learning was identified by asking questions to probe the students’ understanding.

Findings

The use of a direct and an inverse task gave the students an understanding of the structure of the distributive law that they could apply to expand or to factorise algebraic expressions. The teacher opened up a dimension of variation by similarity that gave the students the opportunity to discern the commonality in direct and inverse tasks as well as to relate the direct and inverse tasks to each other. Without an identification of similarity that might help students to compare underlying meanings, or to match one representation to another, students may not experience variations because there is not concordance among the relationships between the representations.

Research limitations/implications

Teachers can produce new knowledge as well as communicate successfully in the classroom when creating teaching activities that promote the discernment of similarity and difference that might help students to compare underlying meanings, or to match one representation to another.

Practical implications

The study represents an example of research which has the aim of improving teachers’ practices by using research results from mathematics education whilst keeping in mind that learning must be improved.

Social implications

The central educational problem is to have students make sense of sophisticated ways of reflecting on the general laws used in mathematics in relation to the algebraic ways of acting and reflecting. Variation theory sees learning as the ability to discern different features or aspects of what is being learned. It postulates that the conception one forms about the object of learning is related to the aspects of the object one notices and focusses upon.

Originality/value

The commutative law for algebraic generalisations is not characterised by the use of notations but, rather, by the way the general is dealt with. Algebraic generalisations entail: the grasping of a commonality related to the discernment of whole-parts relationships, the generalisation of this commonality to two types of transformations: treatments and conversions, and the formation of direct and inverse tasks that allows one to discern the relationship between the whole, the parts, the relations between the parts, the transformation between the parts and the relationship between the parts and the whole.

Details

International Journal for Lesson and Learning Studies, vol. 6 no. 1
Type: Research Article
ISSN: 2046-8253

Keywords

Article
Publication date: 1 August 1996

M. RAUDENSKÝ, J. HORSKÝ, J. KREJSA and L. SLÁMA

Inverse problems deal with determining the causes on the basis of knowing their effects. The object of the inverse parameter estimation problem is to fix the thermal material…

Abstract

Inverse problems deal with determining the causes on the basis of knowing their effects. The object of the inverse parameter estimation problem is to fix the thermal material parameters (the cause) on the strength of a given observation of the temperature history at one or more interior points (the effect). This paper demonstrates two novel approaches to the inverse problems. These approaches use two artificial intelligence mechanisms: neural network and genetic algorithm. Examples shown in this paper give a comparison of results obtained by both of these methods. The numerical technique of neural networks evolved from the effort to model the function of the human brain and the genetic algorithms model the evolutional process of nature. Both of the presented approaches can lead to a solution without having problems with the stability of the inverse task. Both methods are suitable for parallel processing and are advantageous for a multiprocessor computer architecture.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 6 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 October 2013

Gang Zhang, Jianhua Wu, Pinkuan Liu and Han Ding

Based on the inverse kinematics and task space dynamic model, this paper aims to design a high-precision trajectory tracking controller for a 2-DoF translational parallel…

Abstract

Purpose

Based on the inverse kinematics and task space dynamic model, this paper aims to design a high-precision trajectory tracking controller for a 2-DoF translational parallel manipulator (TPM) driven by linear motors.

Design/methodology/approach

The task space dynamic model of a 2-DoF TPM is derived using Lagrangian equation of the first type. A task space dynamic model-based feedforward controller (MFC) is designed, which is combined with a cascade PID/PI controller and velocity feedforward controller (VFC) to construct a hybrid PID/PI+VFC/MFC controller. The hybrid controller is implemented in MATLAB/dSPACE real-time control platform. Experiment results are given to validate the effectiveness and industrial applicability of the hybrid controller.

Findings

The MFC can compensate for the nonlinear dynamic characteristics of a 2-DoF TPM and achieve better tracking performance than the conventional acceleration feedforward controller (AFC).

Originality/value

The task space dynamic model-based hybrid PID/PI+VFC/MFC controller is proposed for a 2-DoF linear-motor-driven TPM, which reduces the tracking error by at least 15 percent compared with conventional hybrid PID/PI+VFC/AFC controller. This control scheme can be extended to high-speed and high-precision trajectory tracking control of other parallel manipulators by reprogramming the feedforward signals of traditional cascade PID/PI controller.

Details

Industrial Robot: An International Journal, vol. 40 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 31 July 2021

Shifa Sulaiman and A.P. Sudheer

Most of the redundant dual-arm robots are singular free, dexterous and collision free compared to other robotic arms. This paper aims to analyse the workspace of redundant arms to…

Abstract

Purpose

Most of the redundant dual-arm robots are singular free, dexterous and collision free compared to other robotic arms. This paper aims to analyse the workspace of redundant arms to study the manipulability. Furthermore, multi-layer perceptron (MLP) algorithm is used to determine the various joint parameters of both the upper body redundant arms. Trajectory planning of robotic arms is carried out with the help of inverse solutions obtained from the MLP algorithm.

Design/methodology/approach

In this paper, the kinematic equations are derived from screw theory approach and inverse kinematic solutions are determined using MLP algorithm. Levenberg–Marquardt (LM) and Bayesian regulation (BR) techniques are used as the backpropagation algorithms. The results from two backpropagation techniques are compared for determining the prediction accuracy. The inverse solutions obtained from the MLP algorithm are then used to optimize the cubic spline trajectories planned for avoiding collision between arms with the help of convex optimization technique. The dexterity of the redundant arms is analysed with the help of Cartesian workspace of arms.

Findings

Dexterity of redundant arms is analysed by studying the voids and singular spaces present inside the workspace of arms. MLP algorithms determine unique solutions with less computational effort using BR backpropagation. The inverse solutions obtained from MLP algorithm effectively optimize the cubic spline trajectory for the redundant dual arms using convex optimization technique.

Originality/value

Most of the MLP algorithms used for determining the inverse solutions are used with LM backpropagation technique. In this paper, BR technique is used as the backpropagation technique. BR technique converges fast with less computational time than LM method. The inverse solutions of arm joints for traversing optimized cubic spline trajectory using convex optimization technique are computed from the MLP algorithm.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 23 March 2012

Hamid Reza Golmakani and Ali Namazi

In many manufacturing systems, machines are subject to preventive maintenance. This paper aims to schedule the operations of jobs and preventive maintenance tasks in such a way…

Abstract

Purpose

In many manufacturing systems, machines are subject to preventive maintenance. This paper aims to schedule the operations of jobs and preventive maintenance tasks in such a way that the completion time of jobs and preventive maintenance tasks is minimized.

Design/methodology/approach

An heuristic approach based on artificial immune algorithm is proposed for solving the multiple‐route job shop‐scheduling problem subject to fixed periodic and age‐dependent preventive maintenance tasks. Under fixed periodic assumption, the time between two consecutive preventive maintenance tasks is assumed constant. Under age‐dependent assumption, a preventive maintenance task is triggered if the machine operates for a certain amount of time. The goal is to schedule the jobs and preventive maintenance task subject to makespan minimization.

Findings

In addition to presenting mathematical formulation for the multiple‐route job shop‐scheduling problem, this paper proposes a novel approach by which one can tackle the complexity that is raised in scheduling and sequencing the jobs and the preventive maintenance simultaneously and obtain the required schedule in reasonable time.

Practical implications

Integrating preventive maintenance tasks into the scheduling procedure is vital in many manufacturing systems. Using the proposed approach, one can obtain a schedule that defines the production route through which each part is processed, the time each operation must be started, and when preventive maintenance must be carried out on each machine. This, in turn, results in overall manufacturing cost reduction.

Originality/value

Using the approach proposed in this paper, good solutions, if not optimal, can be obtained for scheduling jobs and preventive maintenance task in one of the most complicated job shop configurations, namely, multiple‐route job shop. Thus, the approach can dominate all other simpler configurations.

Details

Journal of Quality in Maintenance Engineering, vol. 18 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 3 December 2020

Giuseppe Gillini, Paolo Di Lillo, Filippo Arrichiello, Daniele Di Vito, Alessandro Marino, Gianluca Antonelli and Stefano Chiaverini

In the past decade, more than 700 million people are affected by some kind of disability or handicap. In this context, the research interest in assistive robotics is growing up…

Abstract

Purpose

In the past decade, more than 700 million people are affected by some kind of disability or handicap. In this context, the research interest in assistive robotics is growing up. For people with mobility impairments, daily life operations, as dressing or feeding, require the assistance of dedicated people; thus, the use of devices providing independent mobility can have a large impact on improving their life quality. The purpose of this paper is to present the development of a robotic system aimed at assisting people with this kind of severe motion disabilities by providing a certain level of autonomy.

Design/methodology/approach

The system is based on a hierarchical architecture where, at the top level, the user generates simple and high-level commands by resorting to a graphical user interface operated via a P300-based brain computer interface. These commands are ultimately converted into joint and Cartesian space tasks for the robotic system that are then handled by the robot motion control algorithm resorting to a set-based task priority inverse kinematic strategy. The overall architecture is realized by integrating control and perception software modules developed in the robots and systems environment with the BCI2000 framework, used to operate the brain–computer interfaces (BCI) device.

Findings

The effectiveness of the proposed architecture is validated through experiments where a user generates commands, via an Emotiv Epoc+ BCI, to perform assistive tasks that are executed by a Kinova MOVO robot, i.e. an omnidirectional mobile robotic platform equipped with two lightweight seven degrees of freedoms manipulators.

Originality/value

The P300 paradigm has been successfully integrated with a control architecture that allows us to command a complex robotic system to perform daily life operations. The user defines high-level commands via the BCI, letting all the low-level tasks, for example, safety-related tasks, to be handled by the system in a completely autonomous manner.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 October 2023

Yi Wu, Xiaohui Jia, Tiejun Li, Chao Xu and Jinyue Liu

This paper aims to use redundant manipulators to solve the challenge of collision avoidance in construction operations such as welding and painting.

Abstract

Purpose

This paper aims to use redundant manipulators to solve the challenge of collision avoidance in construction operations such as welding and painting.

Design/methodology/approach

In this paper, a null-space-based task-priority adjustment approach is developed to avoid collisions. The method establishes the relative position of the obstacle and the robot arm by defining the “link space,” and then the priority of the collision avoidance task and the end-effector task is adjusted according to the relative position by introducing the null space task conversion factors.

Findings

Numerical simulations demonstrate that the proposed method can realize collision-free maneuvers for redundant manipulators and guarantee the tracking precision of the end-effector task. The experimental results show that the method can avoid dynamic obstacles in redundant manipulator welding tasks.

Originality/value

A new formula for task priority adjustment for collision avoidance of redundant manipulators is proposed, and the original task tracking accuracy is guaranteed under the premise of safety.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 6000