Search results

1 – 10 of 23
Article
Publication date: 5 February 2024

Swarup Mukherjee, Anupam De and Supriyo Roy

Identifying and prioritizing supply chain risk is significant from any product’s quality and reliability perspective. Under an input-process-output workflow, conventional risk…

Abstract

Purpose

Identifying and prioritizing supply chain risk is significant from any product’s quality and reliability perspective. Under an input-process-output workflow, conventional risk prioritization uses a risk priority number (RPN) aligned to the risk analysis. Imprecise information coupled with a lack of dealing with hesitancy margins enlarges the scope, leading to improper assessment of risks. This significantly affects monitoring quality and performance. Against the backdrop, a methodology that identifies and prioritizes the operational supply chain risk factors signifies better risk assessment.

Design/methodology/approach

The study proposes a multi-criteria model for risk prioritization involving multiple decision-makers (DMs). The methodology offers a robust, hybrid system based on the Intuitionistic Fuzzy (IF) Set merged with the “Technique for Order Performance by Similarity to Ideal Solution.” The nature of the model is robust. The same is shown by applying fuzzy concepts under multi-criteria decision-making (MCDM) to prioritize the identified business risks for better assessment.

Findings

The proposed IF Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) for risk prioritization model can improve the decisions within organizations that make up the chains, thus guaranteeing a “better quality in risk management.” Establishing an efficient representation of uncertain information related to traditional failure mode and effects analysis (FMEA) treatment involving multiple DMs means identifying potential risks in advance and providing better supply chain control.

Research limitations/implications

In a company’s supply chain, blockchain allows data storage and transparent transmission of flows with traceability, privacy, security and transparency (Roy et al., 2022). They asserted that blockchain technology has great potential for traceability. Since risk assessment in supply chain operations can be treated as a traceability problem, further research is needed to use blockchain technologies. Lastly, issues like risk will be better assessed if predicted well; further research demands the suitability of applying predictive analysis on risk.

Practical implications

The study proposes a hybrid framework based on the generic risk assessment and MCDM methodologies under a fuzzy environment system. By this, the authors try to address the supply chain risk assessment and mitigation framework better than the conventional one. To the best of their knowledge, no study is found in existing literature attempting to explore the efficacy of the proposed hybrid approach over the traditional RPN system in prime sectors like steel (with production planning data). The validation experiment indicates the effectiveness of the results obtained from the proposed IF TOPSIS Approach to Risk Prioritization methodology is more practical and resembles the actual scenario compared to those obtained using the traditional RPN system (Kim et al., 2018; Kumar et al., 2018).

Originality/value

This study provides mathematical models to simulate the supply chain risk assessment, thus helping the manufacturer rank the risk level. In the end, the authors apply this model in a big-sized organization to validate its accuracy. The authors validate the proposed approach to an integrated steel plant impacting the production planning process. The model’s outcome substantially adds value to the current risk assessment and prioritization, significantly affecting better risk management quality.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 6
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 13 February 2024

Dinesh Kumar Kushwaha, Dilbagh Panchal and Anish Kumar Sachdeva

An integrated intuitionistic fuzzy (IF) modelling-based framework for examining the performance analysis of a packaging unit (PU) in three different stages has been proposed.

47

Abstract

Purpose

An integrated intuitionistic fuzzy (IF) modelling-based framework for examining the performance analysis of a packaging unit (PU) in three different stages has been proposed.

Design/methodology/approach

For the series and parallel configuration of PU, a mathematical model based on the intuitionistic fuzzy Lambda–Tau (IFLT) approach was developed in order to calculate various reliability parameters at various spreads. For determining membership and non-membership function-based reliability parameters for the top event, AND/OR gate transitions expression was employed.

Findings

For 15%–30% spread, unit’s availability for the membership function falls by 0.006442%, and it falls even more by 0.014907% with an increase in spread from 30% to 45%. In contrast, for 15%–30% spread, the availability of non-membership function-based systems reduces by 0.007491% and further diminishes. Risk analysis has presented applying an emerging approach called intuitionistic fuzzy failure mode and effect analysis (IFFMEA). For each of the stated failure causes, the output values of the intuitionistic fuzzy hybrid weighted Euclidean distance (IFHWED)-based IFFMEA have been tabulated. Failure causes like HP1, MT6, FB9, EL16, DR23, GR27, categorized under subsystems, namely hopper, motor, fluidized bed dryer, distributor, grader and bin, respectively, with corresponding IFFMEA output scores 1.0975, 1.0190, 0.8543, 1.0228, 0.9026, 1.0021, were the most critical one to contribute in the system’s failure.

Research limitations/implications

The limitation of the proposed framework lies in the fact that the results obtained for both reliability and risk aspects mainly depend on the correctness of raw data provided by the experts. Also, an approximate model of PU is obtained from plant experts to carry performance analysis, and hence more attention is required in constructing the model. Under IFLT, reliability parameters of PU have been calculated at various spreads to study and analyse the failure behaviour of the unit for both membership and non-membership function in the IFS of [0.6,0.8]. For both membership- and non-membership-based results, availability of the considered system shows decreasing trend. To improve the performance of the considered system, risk assessment was carried using IFFMEA technique, ranking all the critical failure causes against IFHWED score value, on which more attention should be paid so as to avoid sudden failure of unit.

Social implications

The livelihood of millions of farmers and workers depends on sugar industries. So perpetual running of these industries is very important from this viewpoint. On the basis of findings of reliability parameters, the maintenance manager could frame a correct maintenance policy for long-run availability of the sugar mills. This long-run availability will generate revenue, which, in turn, will ensure the livelihood of the farmers.

Originality/value

Mathematical modelling of the considered unit has been done applying basic expressions of AND/OR gate. IFTOPSIS approach has been implemented for ranking result comparison obtained under IFFMEA approach. Eventually, sensitivity analysis was also presented to demonstrate the stability of ranking of failure causes of PU.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 18 September 2023

Jianxiang Qiu, Jialiang Xie, Dongxiao Zhang and Ruping Zhang

Twin support vector machine (TSVM) is an effective machine learning technique. However, the TSVM model does not consider the influence of different data samples on the optimal…

Abstract

Purpose

Twin support vector machine (TSVM) is an effective machine learning technique. However, the TSVM model does not consider the influence of different data samples on the optimal hyperplane, which results in its sensitivity to noise. To solve this problem, this study proposes a twin support vector machine model based on fuzzy systems (FSTSVM).

Design/methodology/approach

This study designs an effective fuzzy membership assignment strategy based on fuzzy systems. It describes the relationship between the three inputs and the fuzzy membership of the sample by defining fuzzy inference rules and then exports the fuzzy membership of the sample. Combining this strategy with TSVM, the FSTSVM is proposed. Moreover, to speed up the model training, this study employs a coordinate descent strategy with shrinking by active set. To evaluate the performance of FSTSVM, this study conducts experiments designed on artificial data sets and UCI data sets.

Findings

The experimental results affirm the effectiveness of FSTSVM in addressing binary classification problems with noise, demonstrating its superior robustness and generalization performance compared to existing learning models. This can be attributed to the proposed fuzzy membership assignment strategy based on fuzzy systems, which effectively mitigates the adverse effects of noise.

Originality/value

This study designs a fuzzy membership assignment strategy based on fuzzy systems that effectively reduces the negative impact caused by noise and then proposes the noise-robust FSTSVM model. Moreover, the model employs a coordinate descent strategy with shrinking by active set to accelerate the training speed of the model.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 17 July 2023

Kunwar Saraf, Karthik Bajar, Aaditya Jain and Akhilesh Barve

This study aims to determine the barriers hindering the incorporation of blockchain technology (BCT) in two key service industries – hotel and health care – as well as to assess…

Abstract

Purpose

This study aims to determine the barriers hindering the incorporation of blockchain technology (BCT) in two key service industries – hotel and health care – as well as to assess their readiness for implementing BCT after overcoming the barriers.

Design/methodology/approach

The barriers of this study are determined through two phases: a review of prior literature and obtaining expert opinions, which are then analyzed to identify specific barriers that are impeding the incorporation of BCT. Moreover, to generate a blockchain implementation reluctance index (BIRI), this study presents an interval-valued intuitionistic fuzzy set (IVIFS) that uses graph theory and matrix approach (GTMA). The permanent function in the GTMA approach is computed using the PERMAN algorithm. Finally, to compare the readiness of the hotel and health-care industries to adopt BCT, the BIRI values are plotted and evaluated.

Findings

The barriers identified by this study are listed under five major headings, namely, financial, operational, behavioral, technical and legal. This study revealed that the operational and technical barriers of BCT are critically hindering its widespread integration in hotel and health-care industries. Furthermore, on comparing the BIRI values of both industries, the result suggested that the hotel industry needs to work more on these barriers to effectively incorporate BCT. Besides the comparison, the BIRI values clearly indicate that both industries have to put a lot of effort into the mitigation of the barriers found by this study to successfully integrate BCT.

Research limitations/implications

The experts’ opinions are used to evaluate the identified barriers, which raises the chance that the opinions are prejudiced based on the experts’ perspectives and ideologies. The sensitivity of decision-maker loads toward preference outcomes is not analyzed in this manuscript. Therefore, any recent sensitivity analysis may be considered a prospective field for future research. This study applies a multicriteria decision-making (MCDM) approach, IVIFS–GTMA, which limits the evaluation of the influence caused by individual barriers on the integration of BCT in the hotel and health-care industries. Henceforth, in future investigations, alternative MCDM methods may be used to analyze individual barriers.

Practical implications

According to the findings, if the hotel or health-care industry aims to incorporate BCT in its supply chain operations, it is recommended to emphasize more on the operational barriers along with the technical and behavioral barriers. The barriers mentioned in this manuscript can be used as guidance for developers in their development activities, such as scalability concerns, establishment costs, the 51% attack and the inefficient nature of BCT. Furthermore, they may address the potential users’ negative perceptions about security, privacy, trust and risk avoidance through creatively developed blockchain solutions to promote BCT implementation.

Originality/value

To the best of the author’s knowledge, this is the first study that identifies barriers toward BCT incorporation in the major service industries, i.e. hotel and health care. Moreover, this is the first study that compares the preparedness of the hotel and health-care industries to determine the industry that requires more work to implement BCT.

Article
Publication date: 19 December 2022

Hui Zhao, Yuanyuan Ge and Weihan Wang

This study aims to improve the offshore wind farm (OWF) site selection evaluation index system and establishes a decision-making model for OWF site selection. It is expected to…

Abstract

Purpose

This study aims to improve the offshore wind farm (OWF) site selection evaluation index system and establishes a decision-making model for OWF site selection. It is expected to provide helpful references for the progress of offshore wind power.

Design/methodology/approach

Firstly, this paper establishes an evaluation criteria system for OWF site selection, considering six criteria (wind resource, environment, economic, technical, social and risk) and related subcriteria. Then, the Criteria Importance Though Intercrieria Correlation (CRITIC) method is introduced to figure out the weights of evaluation indexes. In addition, the cumulative prospect theory and technique for order preference by similarity to an ideal solution (CPT-TOPSIS) method are employed to construct the OWF site selection decision-making model. Finally, taking the OWF site selection in China as an example, the effectiveness and robustness of the framework are verified by sensitivity analysis and comparative analysis.

Findings

This study establishes the OWF site selection evaluation system and constructs a decision-making model under the spherical fuzzy environment. A case of China is employed to verify the effectiveness and feasibility of the model.

Originality/value

In this paper, a new decision-making model is proposed for the first time, considering the ambiguity and uncertainty of information and the risk attitudes of decision-makers (DMs) in the decision-making process.

Details

Kybernetes, vol. 53 no. 3
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 15 December 2023

Hannan Amoozad Mahdiraji, Aliasghar Abbasi Kamardi, Vahid Jafari-Sadeghi, Seyed Hossein Razavi Hajiagha and Sylvaine Castellano

In this research, the initial list of internal capabilities in small and medium-sized enterprises (SMEs) leading to success in international markets has been extracted. Then, the…

Abstract

Purpose

In this research, the initial list of internal capabilities in small and medium-sized enterprises (SMEs) leading to success in international markets has been extracted. Then, the most relevant capabilities to international SMEs under servitisation and hybrid offerings have been screened. Next, the selected capabilities have been classified, and ultimately the relationship amongst the capabilities has been analysed. The conceptual model for SMEs participating in international markets with hybrid offerings has been illustrated.

Design/methodology/approach

A literature review has been employed to extract the initial list of internal capabilities to address the research objectives. Then, a novel hesitant fuzzy Delphi (HFD) method has been developed to select the most relevant capabilities for SMEs for hybrid offerings in international markets by using the experts opinions. Subsequently, a novel hesitant fuzzy interpretive structural modelling (HFISM) has been developed to classify the capabilities, design a level-based conceptual model and present the relationship amongst the prominent capabilities.

Findings

After the literature review, sixteen internal capabilities leading to success in the international market via hybrid offerings have been extracted. Then, eight selected capabilities were chosen for further investigation by applying 15 expert opinions and via the HFD approach. According to HFISM results, a level-based conceptual model was emanated, and “ability to take advantage of international opportunities”, “financial strength”, “technology level” and “efficient innovation management” were considered as the most fundamental capabilities resulting in successful hybrid offerings in international markets.

Originality/value

Alongside the multi-layer decision-making approach developed in this manuscript to analyse the internal capabilities roles in hybrid offering success towards international markets, to the best knowledge of the authors, the hesitant fuzzy approaches developed in this article have not been previously presented by any other scholar. A novel HFD approach has been designed for consensus amongst the experts under uncertain circumstances. Furthermore, a novel HFISM has been suggested and employed in this research to comprehend the relationship amongst the internal capabilities.

Details

International Marketing Review, vol. 41 no. 2
Type: Research Article
ISSN: 0265-1335

Keywords

Article
Publication date: 24 October 2023

Bianca Arcifa de Resende, Franco Giuseppe Dedini, Jony Javorsky Eckert, Tiago F.A.C. Sigahi, Jefferson de Souza Pinto and Rosley Anholon

This study aims to propose a facilitating methodology for the application of Fuzzy FMEA (Failure Mode and Effect Analysis), comparing the traditional approach with fuzzy…

Abstract

Purpose

This study aims to propose a facilitating methodology for the application of Fuzzy FMEA (Failure Mode and Effect Analysis), comparing the traditional approach with fuzzy variations, supported by a case application in the aeronautical sector.

Design/methodology/approach

Based on experts' opinions in risk analysis within the aeronautical sector, rules governing the relationship between severity, occurrence, detection and risk factor were defined. This served as input for developing a fuzzyfied FMEA tool using the Matlab Fuzzy Logic Toolbox. The tool was applied to the sealing process in a company within the aeronautical sector, using triangular and trapezoidal membership functions, and the results were compared with the traditional FMEA approach.

Findings

The results of the comparative application of traditional FMEA and fuzzyfied FMEA using triangular and trapezoidal functions have yielded valuable insights into risk analysis. The findings indicated that fuzzyfied FMEA maintained coherence with the traditional analysis in identifying higher-risk effects, aligning with the prioritization of critical failure modes. Additionally, fuzzyfied FMEA allowed for a more refined prioritization by accounting for variations in each variable through fuzzy rules, thereby improving the accuracy of risk analysis and providing a more realistic representation of potential hazards. The application of the developed fuzzyfied FMEA approach showed promise in enhancing risk assessment in the aeronautical sector by considering uncertainties and offering a more detailed and context-specific analysis compared to conventional FMEA.

Practical implications

This study emphasizes the potential of fuzzyfied FMEA in enhancing risk assessment by accurately identifying critical failure modes and providing a more realistic representation of potential hazards. The application case reveals that the proposed tool can be integrated with expert knowledge to improve decision-making processes and risk mitigation strategies within the aeronautical industry. Due to its straightforward approach, this facilitating methodology could also prove beneficial in other industrial sectors.

Originality/value

This paper presents the development and application of a facilitating methodology for implementing Fuzzy FMEA, comparing it with the traditional approach and incorporating variations using triangular and trapezoidal functions. This proposed methodology uses the Toolbox Fuzzy Logic of Matlab to create a fuzzyfied FMEA tool, enabling a more nuanced and context-specific risk analysis by considering uncertainties.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 1 March 2023

Hossein Shakibaei, Mohammad Reza Farhadi-Ramin, Mohammad Alipour-Vaezi, Amir Aghsami and Masoud Rabbani

Every day, small and big incidents happen all over the world, and given the human, financial and spiritual damage they cause, proper planning should be sought to deal with them so…

Abstract

Purpose

Every day, small and big incidents happen all over the world, and given the human, financial and spiritual damage they cause, proper planning should be sought to deal with them so they can be appropriately managed in times of crisis. This study aims to examine humanitarian supply chain models.

Design/methodology/approach

A new model is developed to pursue the necessary relations in an optimal way that will minimize human, financial and moral losses. In this developed model, in order to optimize the problem and minimize the amount of human and financial losses, the following subjects have been applied: magnitude of the areas in which an accident may occur as obtained by multiple attribute decision-making methods, the distances between relief centers, the number of available rescuers, the number of rescuers required and the risk level of each patient which is determined using previous data and machine learning (ML) algorithms.

Findings

For this purpose, a case study in the east of Tehran has been conducted. According to the results obtained from the algorithms, problem modeling and case study, the accuracy of the proposed model is evaluated very well.

Originality/value

Obtaining each injured person's priority using ML techniques and each area's importance or risk level, besides developing a bi-objective mathematical model and using multiple attribute decision-making methods, make this study unique among very few studies that concern ML in the humanitarian supply chain. Moreover, the findings validate the results and the model's functionality very well.

Article
Publication date: 12 December 2023

Santonab Chakraborty, Rakesh D. Raut, T.M. Rofin and Shankar Chakraborty

Supplier selection along with continuous evaluation of their performance is a crucial activity in healthcare supply chain management for effective utilization of scarce resources…

Abstract

Purpose

Supplier selection along with continuous evaluation of their performance is a crucial activity in healthcare supply chain management for effective utilization of scarce resources while providing quality service at an affordable price, and minimizing chances of stock-out, avoiding serious consequences on the illness or fatality of the patients. Presence of both qualitative and quantitative evaluation criteria, set of potential suppliers and participation of different stakeholders with varying interest make healthcare supplier selection a challenging task which can be effectively solved using any of the multi-criteria decision making (MCDM) methods.

Design/methodology/approach

To deal with various qualitative criteria, like cost, quality, delivery performance, reliability, responsiveness and flexibility, this paper proposes integration of grey system theory with a newly developed MCDM tool, i.e. mixed aggregation by comprehensive normalization technique (MACONT) to identify the best performing supplier for pharmaceutical items in a healthcare unit from a pool of six competing alternatives based on the opinions of three healthcare professionals.

Findings

While assessing importance of the six evaluation criteria and performance of the alternative healthcare suppliers against those criteria using grey numbers, and exploring use of three normalization procedures and two aggregation operations of MACONT method, this integrated approach singles out S5 as the most compromised healthcare supplier for the considered problem. A sensitivity analysis of its ranking performance against varying values of both balance parameters and preference parameters also validates its solution accuracy and robustness.

Originality/value

This integrated approach can thus efficiently solve healthcare supplier selection problems based on qualitative evaluation criteria in uncertain group decision making environment. It can also be deployed to deal with other decision making problems in the healthcare sector, like supplier selection for healthcare devices, performance evaluation of healthcare units, ranking of physicians etc.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Open Access
Article
Publication date: 26 May 2023

Eloy Gil-Cordero, Belén Maldonado-López, Pablo Ledesma-Chaves and Ana García-Guzmán

The purpose of the research is to analyze the factors that determine the intention of small- and medium-sized enterprises (SMEs) to adopt the Metaverse. For this purpose, the…

1923

Abstract

Purpose

The purpose of the research is to analyze the factors that determine the intention of small- and medium-sized enterprises (SMEs) to adopt the Metaverse. For this purpose, the analysis of the effort expectancy and performance expectancy of the constructs in relation to business satisfaction is proposed.

Design/methodology/approach

The analysis was performed on a sample of 182 Spanish SMEs in the technology sector, using a PLS-SEM approach for development. For the confirmation of the model and its results, an analysis with PLSpredict was performed, obtaining a high predictive capacity of the model.

Findings

After the analysis of the model proposed in this research, it is recorded that the valuation of the effort to be made and the possible performance expected by the companies does not directly determine the intention to use immersive technology in their strategic behavior. Instead, the results obtained indicate that business satisfaction will involve obtaining information, reducing uncertainty and analyzing the competition necessary for approaching this new virtual environment.

Originality/value

The study represents one of the first approaches to the intention of business behavior in the development of performance strategies within Metaverse systems. So far, the literature has approached immersive systems from perspectives close to consumer behavior, but the study of strategic business behavior has been left aside due to the high degree of experimentalism of this field of study and its scientific approach. The present study aims to contribute to the knowledge of the factors involved in the intention to use the Metaverse by SMEs interested in this field.

Details

International Journal of Entrepreneurial Behavior & Research, vol. 30 no. 2/3
Type: Research Article
ISSN: 1355-2554

Keywords

Access

Year

Last 3 months (23)

Content type

Article (23)
1 – 10 of 23