Search results

21 – 30 of 458
Article
Publication date: 19 January 2021

Srikant Gupta, Prasenjit Chatterjee, Morteza Yazdani and Ernesto D.R. Santibanez Gonzalez

Industrial organizations often face difficulties in finding out the methods to meet ever increasing customer expectations and to remain competitive in the global market while…

Abstract

Purpose

Industrial organizations often face difficulties in finding out the methods to meet ever increasing customer expectations and to remain competitive in the global market while maintaining controllable expenses. An effective and efficient green supply chain management (GSCM) can provide a competitive edge to the business. This paper focusses on the selection of green suppliers while simultaneously balancing economic, environmental and social issues.

Design/methodology/approach

In this study, it is assumed that two types of decision-makers (DMs), namely, the first level and second-level DMs operate at two separate groups in GSC. The first-level DMs always empathise to optimize carbon emissions, per unit energy consumption per product and per unit waste production, while the second-level DMs seek to optimize ordering costs, number of rejected units and number of late delivered units in the entire GSCM. In this paper, fuzzy goal programming (FGP) approach has been adopted to obtain compromise solution of the formulated problem by attaining the uppermost degree of each membership goal while reducing their deviational variables. Furthermore, demand has also been forecasted using exponential smoothing analysis. The model is verified on a real-time industrial case study.

Findings

This research enables DMs to analyse uncertainty scenarios in GSCM when information about different parameters are not known precisely.

Research limitations/implications

The proposed model is restricted to vagueness only, however, DMs may need to consider probabilistic multi-choice scenarios also.

Practical implications

The proposed model is generic and can be applied for large-scale GSC environments with little modifications.

Originality/value

No prior attempt is made till date to present interval type-2 fuzzy sets in a multi-objective GSC environment where the DMs are at hierarchical levels. Interval type-2 fuzzy sets are considered as better ways to represent inconsistencies of human judgements, its incompleteness and imprecision more accurately and objectively. Also, crisp or deterministic forms of uncertain parameters have been obtained by taking expected value of the fuzzy parameters.

Details

Management Decision, vol. 59 no. 10
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 9 January 2017

Vasile Georgescu

Type-2 fuzzy sets became attractive in practice because of their footprint of uncertainty that gives them more degrees of freedom. This paper aims to use genetic algorithms (GAs…

Abstract

Purpose

Type-2 fuzzy sets became attractive in practice because of their footprint of uncertainty that gives them more degrees of freedom. This paper aims to use genetic algorithms (GAs) to design an interval Type-2 fuzzy logic system (IT2FLS) for the purpose of predicting bankruptcy.

Design/methodology/approach

The shape of type-2 membership functions, the parameters giving their spread and location in the fuzzy partitions and the set of fuzzy rules are evolved at the same time by encoding all together into the chromosome representation. The enhanced Karnik–Mendel algorithms are used for the centroid type-reduction and defuzzification stage. The performance in predicting bankruptcy is evaluated by benchmarking IT2FLSs against type-1 FLSs. The experimental setup consists of evolving 100 configurations for both the T1FLS and IT2FLS and comparing their in-sample and out-of-sample average accuracy.

Findings

The experiments confirm that representing and capturing uncertainty with more degrees of freedom is an important advantage. It is this extra potential of IT2FLSs that allows them to outperform T1FLS, especially in terms of generalization capability.

Originality/value

The strategy followed in this paper is to train an IT2FLS from scratch rather than tuning the parameters of an existing T1FLS. Because this leads to solving a mixed integer optimization problem, the GA-based approach is specifically designed and uses genetic operators that are most suited for such a case: tournament selection, extended Laplace crossover and power mutation. Finally, the trained IT2FLS is applied to bankruptcy prediction, and its generalization capability is compared with related techniques.

Article
Publication date: 10 July 2020

Hafize Yılmaz and Özgür Kabak

Locating disaster response centers is one of the key elements of efficient relief operations. The location and infrastructure of the candidate facilities usually conform to the…

Abstract

Purpose

Locating disaster response centers is one of the key elements of efficient relief operations. The location and infrastructure of the candidate facilities usually conform to the required criteria at different levels. This study aims to identify the criteria for the main and local distribution center location problem separately and prioritize each candidate distribution center using a hybrid multiple criteria decision-making approach.

Design/methodology/approach

The proposed model incorporates analytic hierarchy process (AHP) and Technique for Order Preference by Similarity to Ideal Solutions (TOPSIS) under interval type-2 fuzzy sets (IT2FSs) to overcome the uncertainty of experts` judgments and expressions in the evaluations of candidate distribution centers. In the proposed approach, weights of the criteria are determined using type-2 fuzzy AHP and the candidate distribution centers are prioritized using type-2 fuzzy TOPSIS.

Findings

Transportation, cost, infrastructure and security are determined as the main criteria for the main distribution center location criteria. Cost, warehouse facilities and security are the main criteria for local distribution center location selection. Prioritization enables decision-makers to assess each alternative accordingly to be able to select the best locations/facilities for efficient disaster response operations.

Originality/value

This study proposes new multi-criteria decision support models for prioritizing disaster response distribution centers. IT2FSs are used to be able to reflect both the complexity and vagueness of disaster environment and expert opinions. Different support models are suggested for main and local distribution centers considering their different missions. The proposed methodology is applied in Istanbul city, Turkey, where a high-magnitude earthquake is expected.

Details

Journal of Enterprise Information Management, vol. 33 no. 5
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 10 January 2023

Mukerrem Bahar Baskir

The purpose of this paper is to propose a novel lean management tool to provide a comprehensive and flexible evaluation model while converting customer voices into technical…

Abstract

Purpose

The purpose of this paper is to propose a novel lean management tool to provide a comprehensive and flexible evaluation model while converting customer voices into technical characteristics in lean implementations.

Design/methodology/approach

For this purpose, the proposed model was constructed by belief space-evaluations, quality function deployment (QFD) and analytic hierarchy process (AHP) in interval type-2 fuzzy (IT2F) environment. This model involves three phases: determining the linguistic weights and belief-based relations with their IT2F-sets, processing information about IT2F-based belief-evaluations and ranking the technical characteristics using the defuzzified belief-based relative importance values.

Findings

The proposed model was applied to automotive after-sales service in Turkey to demonstrate its use in lean service-decisions. This model was compared with its classical and type-1 fuzzy versions. The ranking-results of the proposed model differed from those of the other versions. The reason is that the IT2F-environment offers a sensitive and flexible evaluation of the model’s linguistic scales.

Research limitations/implications

Calculations in the proposed model may be quite involved for practitioners. An Excel-dashboard was created to simplify the computational complexity.

Practical implications

Researchers/practitioners can apply this model to any lean manufacturing/service implementation.

Social implications

Company managers/employees/customers can recognize their perception-mechanisms via belief space-evaluations and experience how uncertainty in the perception-mechanism affects their decisions.

Originality/value

The proposed model provides a new lean tool due to the Bayesian model combined with QFD-AHP in IT2F-environment. This model eliminates the ambiguity in conceptual change-based lean decisions.

Details

International Journal of Lean Six Sigma, vol. 14 no. 3
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 28 June 2021

Himanshukumar R. Patel and Vipul A. Shah

The purpose of this paper is to stabilize the type-2 Takagi–Sugeno (T–S) fuzzy systems with the sufficient and guaranteed stability conditions. The given conditions efficaciously…

Abstract

Purpose

The purpose of this paper is to stabilize the type-2 Takagi–Sugeno (T–S) fuzzy systems with the sufficient and guaranteed stability conditions. The given conditions efficaciously handle parameter uncertainties by the upper and lower membership functions of the type-2 fuzzy sets (FSs).

Design/methodology/approach

This paper reports on a relevant study of stable fuzzy controllers and type-2 T–S fuzzy systems and reported that the synthesis of controller for nonlinear systems described by the type-2 T–S fuzzy model is a key problem and it can be resolve to convex problems via linear matrix inequalities (LMIs).

Findings

The multigain fuzzy controllers are established to improve the solvability of the stability conditions, and the authors design multigain fuzzy controllers which have extensive information of upper and lower membership grades. Consequently, the authors derive the traditional stability condition in terms of LMIs. One simulation examples illustrate the effectiveness and robustness of the derived stabilization conditions.

Originality/value

The uncertain MIMO nonlinear system described by Type-2 Takagi-Sugeno (T-S) fuzzy model, and successively LMI approach used to determine the system stability conditions. The proposed control approach will give superior fault-tolerant control permanence under the actuator fault [partial loss of effectiveness (LOE)]. Also the controller robust against the unmeasurable process disturbances. Additionally, the statistical z-test are carried out to validate the proposed control approach against the control approach proposed by Himanshukumar and Vipul (2019a).

Details

International Journal of Intelligent Computing and Cybernetics, vol. 14 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 18 July 2023

Zehui Bu, Jicai Liu and Xiaoxue Zhang

Subway systems are highly susceptible to external disturbances from emergencies, triggering a series of consequences such as the paralysis of the internal network transportation…

Abstract

Purpose

Subway systems are highly susceptible to external disturbances from emergencies, triggering a series of consequences such as the paralysis of the internal network transportation functions, causing significant economic and safety losses to cities. Therefore, it is necessary to analyze the factors affecting the resilience of the subway system to reduce the impact of disaster incidents.

Design/methodology/approach

Using the interval type-2 fuzzy linguistic term set and the K-medoids clustering algorithm, this paper improves the Decision-Making Trial and Evaluation Laboratory (DEMATEL) method to construct a subway resilience factor analysis model for emergencies. Through comparative analysis, this study confirms the superior performance of the proposed approach in enhancing the precision of the DEMATEL method.

Findings

The results indicate that the operation and management level of emergency command organizations is the key resilience factors of subway operations in China. Furthermore, based on real case analyses, the corresponding suggestions and measures are put forward to improve the overall operation resilience level of the subway.

Originality/value

This paper identifies four emergency scenarios and 15 resilience factors affecting subway operations through literature review and expert consultation. The improved fuzzy DEMATEL method is applied to explore the levels of influence and causal mechanisms among the resilience factors of the subway system under the four emergency scenarios.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 15 March 2013

Zivojin Prascevic and Natasa Prascevic

The purpose of this paper is to present one modification of the fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and to develop a corresponding…

1681

Abstract

Purpose

The purpose of this paper is to present one modification of the fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and to develop a corresponding computer program which could be used for the multicriteria decision making for problems in practice.

Design/methodology/approach

This method is based on the uncertainties and probabilities of input data for ratings of alternatives with respect to criteria and weights of criteria that are presented by triangular fuzzy numbers as probabilistic fuzzy values. These input data are transformed in the procedure into output data that are relevant for the ranking of alternatives and decision making.

Findings

The proposed method is based on the generalized mean and spread of fuzzy numbers that are calculated according to probability of fuzzy events due to Zadeh. Ranking of alternatives for relevant criteria performs according to relative expected closeness, coefficient of variation and relative standard deviation of distance of alternatives to the ideal solutions. The most acceptable rule is related to the minimal value of the expected relative distance to positive ideal solution, especially when the coefficient of variation of distance to this solution is small. The attached example, related to a real project, confirms these findings.

Originality/value

This paper proposes three novel contributions in this area. Unlike the methods proposed by other authors, the weighted fuzzy decision matrix is expressed by the matrix of generalized expected values and matrix of generalized variances. To compute elements of these two matrices, exact formulae are derived and then the modified fuzzy TOPSIS procedure is carried out.

Content available
Book part
Publication date: 5 October 2018

Abstract

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Article
Publication date: 24 September 2020

Jafar Tavoosi

The purpose of this paper is to present a novel intelligent backstepping sliding mode control for an experimental permanent magnet synchronous motor.

Abstract

Purpose

The purpose of this paper is to present a novel intelligent backstepping sliding mode control for an experimental permanent magnet synchronous motor.

Design/methodology/approach

A novel recurrent radial basis function network (RBFN) is used to is used to approximate unknown nonlinear functions in permanent magnet synchronous motor (PMSM) dynamics. Then, using the functions obtained from the neural network, it is possible to design a model-based and precise controller for PMSM using the immersive modeling method.

Findings

Experimental results indicate the appropriate performance of the proposed method.

Originality/value

This paper presents a novel intelligent backstepping sliding mode control for an experimental permanent magnet synchronous motor. A novel recurrent RBFN is used to is used to approximate unknown nonlinear functions in PMSM dynamics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 December 2020

Zhixiong Li, Morteza Jamshidian, Sayedali Mousavi, Arash Karimipour and Iskander Tlili

In this paper, the uncertainties important components and the structure status are obtained by using the condition monitoring, expert groups and multiple membership functions by…

Abstract

Purpose

In this paper, the uncertainties important components and the structure status are obtained by using the condition monitoring, expert groups and multiple membership functions by creating a fuzzy system in MATLAB software.

Design/methodology/approach

In the form of fuzzy type, the average structural safety must be followed to replace the damages or to absolutely control the decision-making. Uncertainty in the functionality of hydraulic automated guided vehicles (AGVs), without knowing the reliability of pieces, can cause failure in the manufacturing process. It can be controlled by the condition monitoring pieces done by measurement errors and ambiguous boundaries.

Findings

As a result, this monitoring could increase productivity with higher quality in delivery in flexible manufacturing systems with an increase of 70% reliability mutilation for the hydraulic AGV parts.

Originality/value

Hydraulic AGVs play a vital role in flexible manufacturing in recent years. Lately, several strategies for maintenance and repairing of hydraulic AGVs exist in the industry but are still confronted with many uncertainties. The hydraulic AGV is faced with uncertainty after 10 years of working in terms of reliability. Reconstruction of the old parts with the new parts may not have the quality and durability.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

21 – 30 of 458