Search results

1 – 10 of 161
Article
Publication date: 15 April 2014

Yuko Inatomi, Motohiro Ashida, Kaoruho Sakata and Takeshi Okutani

The authors performed FACET (Investigation on Mechanism of Faceted Cellular Array Growth) experiments under long duration microgravity on the International Space Station (ISS) in…

Abstract

The authors performed FACET (Investigation on Mechanism of Faceted Cellular Array Growth) experiments under long duration microgravity on the International Space Station (ISS) in 2010. The temperature and concentration distributions in the melt during the growth were precisely measured with high spatial resolution. Negative temperature gradient as well as negative concentration gradient ahead of the S/L interface can be expected to be the driving forces of the morphological instability. It is evident that the conventional model based on the frozen temperature approximation is insufficient to explain the growth mechanism of the faceted cellular array.

Article
Publication date: 1 June 1993

C.P.T. GROTH and J.J. GOTTLIEB

Partially‐decoupled upwind‐based total‐variation‐diminishing (TVD) finite‐difference schemes for the solution of the conservation laws governing two‐dimensional non‐equilibrium…

83

Abstract

Partially‐decoupled upwind‐based total‐variation‐diminishing (TVD) finite‐difference schemes for the solution of the conservation laws governing two‐dimensional non‐equilibrium vibrationally relaxing and chemically reacting flows of thermally‐perfect gaseous mixtures are presented. In these methods, a novel partially‐decoupled flux‐difference splitting approach is adopted. The fluid conservation laws and species concentration and vibrational energy equations are decoupled by means of a frozen flow approximation. The resulting partially‐decoupled gas‐dynamic and thermodynamic subsystems are then solved alternately in a lagged manner within a time marching procedure, thereby providing explicit coupling between the two equation sets. Both time‐split semi‐implicit and factored implicit flux‐limited TVD upwind schemes are described. The semi‐implicit formulation is more appropriate for unsteady applications whereas the factored implicit form is useful for obtaining steady‐state solutions. Extensions of Roe's approximate Riemann solvers, giving the eigenvalues and eigenvectors of the fully coupled systems, are used to evaluate the numerical flux functions. Additional modifications to the Riemann solutions are also described which ensure that the approximate solutions are not aphysical. The proposed partially‐decoupled methods are shown to have several computational advantages over chemistry‐split and fully coupled techniques. Furthermore, numerical results for single, complex, and double Mach reflection flows, as well as corner‐expansion and blunt‐body flows, using a five‐species four‐temperature model for air demonstrate the capabilities of the methods.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 1 July 2020

Milena Kiliszkiewicz, Dariusz Przybylski, Jan Felba and Ryszard Korbutowicz

The purpose of this paper is to analyze the individual steps during the printing of capacitor structures. The method of substrate preparation, the obtained roughness of conductive…

748

Abstract

Purpose

The purpose of this paper is to analyze the individual steps during the printing of capacitor structures. The method of substrate preparation, the obtained roughness of conductive and dielectric layers are examined. Moreover, the capacitances of the obtained capacitors were examined.

Design/methodology/approach

Surface roughness and microscopic analysis were used to assess the quality of printed conductive structures. Two criteria were used to assess the quality of printed dielectric structures: the necessary lack of discontinuity of layers and minimal roughness. To determine the importance of printing parameters, a draft experimental method was proposed.

Findings

The optimal way to clean the substrate has been determined. The most important parameters for the dielectric layer (i.e. drop-space, table temperature, curing time and temperature) were found.

Research limitations/implications

If dielectric layers are printed correctly, most problems with printing complex electronic structures (transistors, capacitors) will be eliminated.

Practical implications

The tests performed identified the most important factors for dielectric layers. Using them, capacitors of repeatable capacity were printed.

Originality/value

In the literature on this subject, no factors were found which were responsible for obtaining homogeneous dielectric layers.

Details

Soldering & Surface Mount Technology, vol. 32 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 March 2002

Jaroslav Mackerle

Gives a bibliographical review of the finite element analyses of sandwich structures from the theoretical as well as practical points of view. Both isotropic and composite…

3429

Abstract

Gives a bibliographical review of the finite element analyses of sandwich structures from the theoretical as well as practical points of view. Both isotropic and composite materials are considered. Topics include: material and mechanical properties of sandwich structures; vibration, dynamic response and impact problems; heat transfer and thermomechanical responses; contact problems; fracture mechanics, fatigue and damage; stability problems; special finite elements developed for the analysis of sandwich structures; analysis of sandwich beams, plates, panels and shells; specific applications in various fields of engineering; other topics. The analysis of cellular solids is also included. The bibliography at the end of this paper contains 655 references to papers, conference proceedings and theses/dissertations dealing with presented subjects that were published between 1980 and 2001.

Details

Engineering Computations, vol. 19 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 June 2020

Tao Wei, Sijin Zhao, Zongzhan Gao, Ke Zhang, Wenxuan Gou and Yangfan Dang

Fatigue and creep are the key factors for the failure of polymethyl methacrylate (PMMA) in the engineering structure, so a great of quantity attention is focused on the life…

Abstract

Purpose

Fatigue and creep are the key factors for the failure of polymethyl methacrylate (PMMA) in the engineering structure, so a great of quantity attention is focused on the life prediction under the creep and fatigue conditions. This paper aims to mainly summarize the traditional life assessment method (S–N curve), life assessment method based on crazing density and life assessment method based on transmittance. S–N curve and classical creep curve are introduced on the traditional life assessment method; the variation of the craze density with the logarithm of cyclic numbers is given in different fatigue load. A linear relationship is obtained, and a higher stress leads to a higher slope, suggesting a faster growth of craze. Furthermore, a craze density model is purposed to describe this relationship; the variation of craze density with the time at different creep load is given. The craze density has two obvious stages. At the first stage, craze density ranged from approximately 0.02 to 0.17, and a linear relationship is obtained. In the following stage, a nonlinear relationship appears till specimen rupture, a new creep life model is proposed to depict two stages. The relationship between transmission and time under creep load is shown. With increasing of time, the transmittance shows a nonlinear decrease. Through polynomial nonlinear fitting, a relationship between the transmittance and residual life can be obtained. To provide reference for the life assessment of transparent materials, the paper compares three life assessment methods of PMMA.

Design/methodology/approach

This paper uses the traditional life assessment method (S–N curve), life assessment method based on crazing density, life assessment method based on transmittance.

Findings

The variation of the craze density with the logarithm of cyclic numbers is given in different fatigue loads. A linear relationship is obtained, and a higher stress leads to a higher slope, suggesting a faster growth of craze. Furthermore, a craze density model is proposed to describe this relationship, and the variation of craze density with the time at different creep loads is given. The craze density has two obvious stages. The relationship between transmission and time under creep load is shown. With increasing of time, the transmittance shows a nonlinear decrease. Through polynomial nonlinear fitting, a relationship between the transmittance and residual life can be obtained.

Originality/value

Fatigue and creep are the key factors for the failure of PMMA in the engineering structure, so a great of quantity attention is focused on the life prediction under the conditions of creep and fatigue. This paper mainly summarizes traditional life assessment method (S–N curve), life assessment method based on crazing density and life assessment method based on transmittance.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 May 2010

Li‐Ming Chu, Jin‐Yuan Lai, Chi‐Hui Chien and Jaw‐Ren Lin

The purpose of this paper is to present a novel method to investigate the microscopic mechanism of the oil film under the pure squeeze elastohydrodynamic lubrication (EHL) motion…

Abstract

Purpose

The purpose of this paper is to present a novel method to investigate the microscopic mechanism of the oil film under the pure squeeze elastohydrodynamic lubrication (EHL) motion. An optical EHL squeeze tester is used to explore the effects of squeeze velocity, load, temperature, and lubricant viscosity on the dimple film thickness that occurs when a ball approaches a flat plate covered by a thin layer of oil.

Design/methodology/approach

The grayscale interferometric technique was used to study the thickness of the lubricating film in an EHL point contact. The light source was a He‐Ne laser. Through the transparent optical glass and by means of optical interference, the interference fringe patterns of the contact region were observed by a charge‐coupled device camera recording. The two elastic bodies were a sapphire disk and a steel ball. The contact was lubricated with paraffin‐based oil.

Findings

Results show that increasing the squeeze speed, load, viscosity, and decreasing the temperature, make the dimple deeper, and the contact area increases. Moreover, as the squeeze speed and load decrease and temperature increases, the fluidity of the lubricant increases and less time is needed to extrude. The maximum thickness of the dimple increases with increasing squeeze speed, load, lubricant viscosity, and decreasing temperature. The greatest effect of pure squeeze EHL motion is found with squeeze velocity, followed by load, and then temperature for the same lubricant viscosity.

Originality/value

The paper usefully describes the use of a self‐development optical EHL squeeze tester to explore the effects of temperature, squeeze velocity, load, and lubricant viscosity on the dimple film thickness which occurs between two components approaching each other.

Details

Industrial Lubrication and Tribology, vol. 62 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 February 1982

A new instrument from Rank Taylor Hobson has met the challenge of measuring accurately both surface texture and conformance to a flat or circular arc profile. Immediate potential…

Abstract

A new instrument from Rank Taylor Hobson has met the challenge of measuring accurately both surface texture and conformance to a flat or circular arc profile. Immediate potential is seen in applications by the precision bearings industry for measurement of ball races, bearings, and rollers, and by engineering companies to measure precision spherical and cylindrical components, fillet radii and diamond tipped tools.

Details

Sensor Review, vol. 2 no. 2
Type: Research Article
ISSN: 0260-2288

Article
Publication date: 8 March 2018

Hui Wang, Zheng Zhang, Zhao Xiong, Tianye Liu, Kai Long, Xusong Quan and Xiaodong Yuan

It is a huge technical and engineering challenge to realize the precise assembly of thousands of large optics in high power solid-state laser system. Using the 400-mm…

252

Abstract

Purpose

It is a huge technical and engineering challenge to realize the precise assembly of thousands of large optics in high power solid-state laser system. Using the 400-mm aperture-sized transport mirror as a case, this paper aims to present an intelligent numerical computation methodology for mounting performance analysis and modeling of large optics in a high-power laser system for inertial confinement fusion (ICF).

Design/methodology/approach

Fundamental principles of modeling and analysis of the transport mirror surface distortion are proposed, and a genetic algorithm-based computation framework is proposed to evaluate and optimize the assembly and mounting performance of large laser optics.

Findings

The stringent specifications of large ICF optics place very tight constraints upon the transport mirror’s assembly and mounts. The operational requirements on surface distortion [peak-to-valley and root mean square (RMS)] can be met as it is appropriately assembled by the close loop of assembly-inspection-optimization-fastening. In the end, the experimental study validates the reliability and effectiveness of the transport mirror mounting method.

Originality/value

In the assembly design and mounting performance evaluation of large laser optics, the whole study has the advantages of accurate evaluation and intelligent optimization on nano-level optical surface distortion, which provides a fundamental methodology for precise assembly and mounting of large ICF optics.

Details

Assembly Automation, vol. 38 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 July 2006

Eric Marsh, David Arneson, Matthew Van Doren and Scott Blystone

The purpose of this paper is to show how an ultra‐precision manufacturing process (flycutting) can be improved through interferometry.

Abstract

Purpose

The purpose of this paper is to show how an ultra‐precision manufacturing process (flycutting) can be improved through interferometry.

Design/methodology/approach

The paper presents a theoretical model of the machine tool cutting system and then uses interferometer measurements to validate the results. The model is then used to show some general findings relating process conditions to workpiece quality.

Findings

A realistic cutting model can predict the workpiece flatness with excellent accuracy and closely match interferometer measurements. The process parameters in precision flycutting should be chosen such that the flycutting tool is in contact with the workpiece for an integer number of vibration cycles. The machine tool stiffness and structural damping will affect the workpiece quality, but the most significant improvements are made through thoughtful selection of the flycutter spindle speed as it relates to the machine dynamics.

Originality/value

This paper presents a math model that accurately matches results obtained by experimental verification and extensive testing. Interferometry is shown to be an extremely useful tool in optimizing the process conditions in a flycutting manufacturing operation. Furthermore, the results are of general use to practitioners using flycutting in a variety of industrial applications.

Details

Sensor Review, vol. 26 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 March 2005

José Mireles

Owing to the technology growth, especially in Microsystems technology and Nanotechnology, new products will provide new ways to sense variables that are crucial for product…

1566

Abstract

Purpose

Owing to the technology growth, especially in Microsystems technology and Nanotechnology, new products will provide new ways to sense variables that are crucial for product improvement and system reliability. A big concern of the scientific community is the measurement of low level flow measurements, especially for the biomedical and/or systems on a chip approaches.Design/methodology/approach – A new flow meter concept design consists of a surface micromachined sensor having an optical high reflective mirror made of gold, which is attached to unique cantilever designs that bend due to the drag force of mass flow. The bending of the cantilevers produces the mirror to approach/depart from an optical fiber end‐tip. The reflective light to fiber is modulated using a Fabry‐Perot interferometry technique to determine the mirror separation to the fiber, which corresponds to the mass flow.Findings – The new concept design shows a big potential approach to measure low flow measurements for air, gas and liquids of low viscosity. The results of this concept, through finite element analysis, show that the material used to build the sensor, makes them excellent candidates for fabrication. The stresses of the materials and allowable (readable) bending are among the tolerances of such materials/construction‐design. The sensor is not affected by electromagnetic interference and does not require electrical currents to sense, i.e. it is perfectly suited for biomedical and low mass‐flow sensing such as lab‐on‐chip applications.Originality/value – Among all approaches to sense low flow measurements, most of them need either “big” turbine approaches (dimensions over 1 cm diameter), or the need of an electrical approach needed in the end measurement sensor. This work proposes a non‐electrical approach.

Details

Sensor Review, vol. 25 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 161