Search results

1 – 10 of over 4000
Article
Publication date: 17 October 2023

Yongliang Wang and Nana Liu

Multi-well hydrofracturing is an important technology to create new fractures and expand existing fractures to increase reservoir permeability. The propagation morphology of the…

Abstract

Purpose

Multi-well hydrofracturing is an important technology to create new fractures and expand existing fractures to increase reservoir permeability. The propagation morphology of the fracture network is affected by the disturbance between the fractures initiation sequences and spacings between adjacent wells. However, it remains unclear how well spacing and initiation sequences lead to fracture propagation, deflection and connection.

Design/methodology/approach

In this study, the thermal-hydro-mechanical coupling effect in the hydrofracturing process was considered, to establish a finite element-discrete element model of multistage hydrofracturing in a horizontal well. Using typical cases, the unstable propagation of hydraulic fractures in multiple horizontal wells was investigated under varying well spacing and initiation sequences. Combined with the shear stress shadow caused by in situ stress disturbed by fracture tip propagation, the quantitative indexes of fracture propagation such as length, volume, displacement vector, deflection and unstable propagation behavior of the hydrofracturing fracture network were analyzed.

Findings

The results show that the shear stress disturbance caused by multiple hydraulic fractures is a significant factor in multi-well hydrofracturing. Reducing the spacing between multiple wells increases the stress shadow area and aggravates the mutual disturbance and deflection between the fractures. The quantitative analysis results show that a decrease of well spacing reduces the total length of hydraulic fractures but increases the total volume of the fracture; compared with sequential and simultaneous fracturing, alternate fracturing can effectively reduce stress shadow area, alleviate fracture disturbance and generate larger fracture propagation length and volume.

Originality/value

The numerical models and results of the unstable propagation and stress evolution of the hydraulic fracture network under thermal-hydro-mechanical coupling obtained in this study can provide useful guidance for the evaluation and design of rock mass fracture networks in deep unconventional oil and gas reservoirs.

Article
Publication date: 20 July 2023

Yongliang Wang

The purpose of this study is to investigate the unstable propagation of parallel hydraulic fractures induced by interferences of adjacent perforation clusters and thermal…

Abstract

Purpose

The purpose of this study is to investigate the unstable propagation of parallel hydraulic fractures induced by interferences of adjacent perforation clusters and thermal diffusion. Fracture propagation in the process of multistage fracturing of a rock mass is deflected owing to various factors. Hydrofracturing of rock masses in deep tight reservoirs involves thermal diffusion, fluid flow and deformation of rock between the rock matrix and fluid in pores and fractures.

Design/methodology/approach

To study the unstable propagation behaviours of three-dimensional (3D) parallel hydraulic fractures induced by the interferences of adjacent perforation clusters and thermal diffusion, a 3D engineering-scale numerical model is established under different fracturing scenarios (sequential, simultaneous and alternate fracturing) and different perforation cluster spacings while considering the thermal-hydro-mechanical coupling effect. Stress disturbance region caused by fracture propagation in a deep tight rock mass is superimposed and overlaid with multiple fractures, resulting in a stress shadow effect and fracture deflection.

Findings

The results show that the size of the stress shadow areas and the interaction between fractures increase with decreasing multiple perforation cluster spacing in horizontal wells. Alternate fracturing can produce more fracture areas and improve the fracturing effect compared with those of sequential and simultaneous fracturing. The larger the temperature gradient between the fracturing fluid and rock matrix, the stronger the thermal diffusion effect, and the effect of thermal diffusion on the fracture propagation is significant.

Originality/value

This study focuses on the behaviours of the unstable dynamic propagation of 3D parallel hydraulic fractures induced by the interferences of adjacent perforation clusters and thermal diffusion. Further, the temperature field affects the fracture deflection requires could be investigated from the mechanisms; this paper is to study the unstable propagation of fractures in single horizontal well, which can provide a basis for fracture propagation and stress field disturbance in multiple horizontal wells.

Details

Engineering Computations, vol. 40 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 January 2023

Yongliang Wang and Nana Liu

The unstable dynamic propagation of multistage hydrofracturing fractures leads to uneven development of the fracture network and research on the mechanism controlling this…

Abstract

Purpose

The unstable dynamic propagation of multistage hydrofracturing fractures leads to uneven development of the fracture network and research on the mechanism controlling this phenomenon indicates that the stress shadow effects around the fractures are the main mechanism causing this behaviour. Further studies and simulations of the stress shadow effects are necessary to understand the controlling mechanism and evaluate the fracturing effect.

Design/methodology/approach

In the process of stress-dependent unstable dynamic propagation of fractures, there are both continuous stress fields and discontinuous fractures; therefore, in order to study the stress-dependent unstable dynamic propagation of multistage fracture networks, a series of continuum-discontinuum numerical methods and models are reviewed, including the well-developed extended finite element method, displacement discontinuity method, boundary element method and finite element-discrete element method.

Findings

The superposition of the surrounding stress field during fracture propagation causes different degrees of stress shadow effects between fractures and the main controlling factors of stress shadow effects are fracture initiation sequence, perforation cluster spacing and well spacing. The perforation cluster spacing varies with the initiation sequence, resulting in different stress shadow effects between fractures; for example, the smaller the perforation cluster spacing and well spacing are, the stronger the stress shadow effects are and the more seriously the fracture propagation inhibition arises. Moreover, as the spacing of perforation clusters and well spacing increases, the stress shadow effects decrease and the fracture propagation follows an almost straight pattern. In addition, the computed results of the dynamic distribution of stress-dependent unstable dynamic propagation of fractures under different stress fields are summarised.

Originality/value

A state-of-art review of stress shadow effects and continuum-discontinuum methods for stress-dependent unstable dynamic propagation of multiple hydraulic fractures are well summarized and analysed. This paper can provide a reference for those engaged in the research of unstable dynamic propagation of multiple hydraulic structures and have a comprehensive grasp of the research in this field.

Details

Engineering Computations, vol. 40 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 October 2021

Yongliang Wang, Nana Liu, Xin Zhang, Xuguang Liu and Juan Wang

Simultaneous hydrofracturing of multiple perforation clusters in vertical wells has been applied in the stimulation of hydrocarbon resources reservoirs. This technology is…

Abstract

Purpose

Simultaneous hydrofracturing of multiple perforation clusters in vertical wells has been applied in the stimulation of hydrocarbon resources reservoirs. This technology is significantly impeded due to the challenges in its application to the multilayered reservoirs that comprise multiple interlayers. One of the challenges is the accurate understanding and characterization of propagation and deflection of the multiple hydraulic fractures between reservoirs and embedded interlayers.

Design/methodology/approach

Numerical models of the tight multilayered reservoirs containing multiple interlayers were established to study hydrofracturing of multiple perforation clusters and its influencing factors on unstable propagation and deflection of hydraulic fractures. Brittle and plastic multilayered reservoirs fully considering the influences of different in situ stress ratio and physical attributes for reservoir and interlayer strata on propagations of hydraulic fractures were investigated. The combined finite element–discrete element method and mesh refinement strategy were adopted to guarantee the accuracy of stress solutions and reliability of fracture path in computation.

Findings

Results show that the shear stress fields between adjacent multiple hydraulic fractures are superposed to cause fractures deflection. Stress shadows induce the shielding effects of hydraulic fractures and inhibit fractures growth to emerge unstable propagation behaviors, and a main single fracture and several minor fractures develop. As the in situ stress ratio increases, hydraulic fractures more easily deflect toward the direction of maximum in situ stress, and stress shadow and mutual interaction effects between them are intensified. Compared to brittle reservoir, plastic-enhanced reservoir may limit fracture growth and cannot form long fracture length; nevertheless, plastic properties of reservoir are prone to induce more microseismic events with larger magnitude.

Originality/value

The obtained fracturing behaviors and mechanisms based on engineering-scale multilayered reservoir may provide effective schemes for controlling and estimating the unstable propagation of multiple hydraulic fractures.

Article
Publication date: 14 July 2022

Yongliang Wang, Jin Huang and Guocheng Wang

This study aims to analyse the deep resource mining that causes high in situ stress, and the disturbance of tunnelling and mining which may induce large stress concentration…

Abstract

Purpose

This study aims to analyse the deep resource mining that causes high in situ stress, and the disturbance of tunnelling and mining which may induce large stress concentration, plastic deformation and rock strata compression deformation. The depth of deep resources, excavation rate and multilayered heterogeneity are critical factors of excavation disturbance in deep rock. However, at present, there are few engineering practices used in deep resource mining, and it is difficult to analyse the high in situ stress and dynamic three-dimensional (3D) excavation process in laboratory experiments. As a result, an understanding of the behaviours and mechanisms of the dynamic evolution of the stress field and plastic zone in deep tunnelling and mining surrounding rock is still lacking.

Design/methodology/approach

This study introduced a 3D engineering-scale finite element model and analysed the scheme involved the elastoplastic constitutive and element deletion techniques, while considering the influence of the deep rock mass of the roadway excavation, coal seam mining-induced stress, plastic zone in the process of mining disturbance of the in situ stress state, excavation rate and layered rock mass properties at the depths of 500 m, 1,500 m and 2,500 m of several typical coal seams, and the tunnelling and excavation rates of 0.5 m/step, 1 m/step and 2 m/step. An engineering-scale numerical model of the layered rock and soil body in an actual mining area were also established.

Findings

The simulation results of the surrounding rock stress field, dynamic evolution and maximum value change of the plastic zone, large deformation and settlement of the layered rock mass are obtained. The numerical results indicate that the process of mining can be accelerated with the increase in the tunnelling and excavation rate, but the vertical concentrated stress induced by the surrounding rock intensifies with the increase in the excavation rate, which becomes a crucial factor affecting the instability of the surrounding rock. The deep rock mass is in the high in situ stress state, and the stress and plastic strain maxima of the surrounding rock induced by the tunnelling and mining processes increase sharply with the excavation depth. In ultra-deep conditions (depth of 2,500 m), the maximum vertical stress is quickly reached by the conventional tunnelling and mining process. Compared with the deep homogeneous rock mass model, the multilayered heterogeneous rock mass produces higher mining-induced stress and plastic strain in each layer during the entire process of tunnelling and mining, and each layer presents a squeeze and dislocation deformation.

Originality/value

The results of this study can provide a valuable reference for the dynamic evolution of stress and plastic deformation in roadway tunnelling and coal seam mining to investigate the mechanisms of in situ stress at typical depths, excavation rates, stress concentrations, plastic deformations and compression behaviours of multilayered heterogeneity.

Details

Engineering Computations, vol. 39 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 April 2020

Sunita Deswal, Devender Sheoran and Kapil Kumar Kalkal

The purpose of this paper is to establish a model of two-dimensional half-space problem of linear, isotropic, homogeneous, initially stressed, rotating thermoelastic medium with…

Abstract

Purpose

The purpose of this paper is to establish a model of two-dimensional half-space problem of linear, isotropic, homogeneous, initially stressed, rotating thermoelastic medium with microtemperatures. The expressions for different physical variables such as displacement distribution, stress distribution, temperature field and microtemperatures are obtained in the physical domain.

Design/methodology/approach

Normal mode analysis technique is adopted to procure the exact solution of the problem.

Findings

Numerical computations have been carried out with the help of MATLAB programming, and the results are illustrated graphically. Comparisons are made to show the effects of rotation, time and microtemperatures on the resulting quantities. The graphical results indicate that the effects of rotation, microtemperatures and time are very pronounced on the field variables.

Originality/value

In the present work, we have investigated the effects of rotation, time and microtemperature in an initially stressed thermoelastic medium. Although various investigations do exist to observe the disturbances in a thermoelastic medium under the effects of different parameters, the work in its present form, i.e. the disturbances in a thermoelastic medium in the presence of angular velocity, initial stress and microtemperature have not been studied till now. The present work is useful and valuable for analysis of problems involving coupled thermal shock, rotation parameter, microtemperatures and elastic deformation.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 9 December 2020

Rajesh Kumar, Seema Thakran, Ankush Gunghas and Kapil Kumar Kalkal

The purpose of this study is to analyze the two-dimensional disturbances in a nonlocal, functionally graded, isotropic thermoelastic medium under the purview of the Green–Lindsay…

Abstract

Purpose

The purpose of this study is to analyze the two-dimensional disturbances in a nonlocal, functionally graded, isotropic thermoelastic medium under the purview of the Green–Lindsay model of generalized thermoelasticity. The formulation is subjected to a mechanical load. All the thermomechanical properties of the solid are assumed to vary exponentially with the position.

Design/methodology/approach

Normal mode technique is proposed to obtain the exact expressions for the displacement components, stresses and temperature field.

Findings

Numerical computations have been carried out with the help of MATLAB software and the results are illustrated graphically. These are also calculated numerically for a magnesium crystal-like material and illustrated through graphs. Theoretical and numerical results demonstrate that the nonlocality and nonhomogeneity parameters have significant effects on the considered physical fields.

Originality/value

Influences of nonlocality and nonhomogeneity on the physical quantities are carefully analyzed for isothermal and insulated boundaries. The present work is useful and valuable for analysis of problems involving mechanical shock, nonlocal parameter, functionally graded materials and elastic deformation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 November 2022

Sandeep Kundu, Kapil Kumar Kalkal, Monika Sangwan and Devender Sheoran

The purpose of the present paper is to investigate the thermo-mechanical interactions in an initially stressed nonlocal micropolar thermoelastic half-space having void pores under…

154

Abstract

Purpose

The purpose of the present paper is to investigate the thermo-mechanical interactions in an initially stressed nonlocal micropolar thermoelastic half-space having void pores under Lord–Shulman model. A moving thermal shock is applied to the formulation.

Design/methodology/approach

The normal mode technique is adopted to obtain the exact expressions of the physical quantities.

Findings

Numerical computations for stresses, displacement components, temperature field and change in the volume fraction field are performed for suitable material and are depicted graphically. Some comparisons have been shown in figures to estimate the effects of micropolarity, initial stress, voids, nonlocal parameter and time on the resulting quantities.

Originality/value

The exact expressions for the displacement components, stresses, temperature and change in the volume fraction field are obtained in the physical domain. Although numerous investigations do exist to observe the disturbances in a homogeneous, isotropic, initially stressed, micropolar thermoelastic half-space, the work in its current form has not been established by any scholar till now. The originality of the present work lies in the formulation of a fresh research problem to investigate the dependence of different physical fields on nonlocality parameters, micropolarity, initial stress, porosity and time due to the application of a moving thermal shock.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 September 2021

Sunil Kumar, Aarti Kadian and Kapil Kumar Kalkal

The purpose of this study is to analyze the disturbances in a two-dimensional nonlocal, micropolar elastic medium under the dual-phase-lag model of thermoelasticity whose surface…

Abstract

Purpose

The purpose of this study is to analyze the disturbances in a two-dimensional nonlocal, micropolar elastic medium under the dual-phase-lag model of thermoelasticity whose surface is subjected to an inclined mechanical load. The present study is carried out under the influence of gravity.

Design/methodology/approach

The normal mode technique is used to obtain the exact expressions of the physical fields.

Findings

For inclined mechanical load, the impact of micropolarity, nonlocal parameter, gravity and inclination angle have been highlighted on the considered physical fields.

Originality/value

The numerical results are computed for various physical quantities such as displacement, stresses and temperature for a magnesium crystal-like material and are illustrated graphically. The study is valuable for the analysis of thermoelastic problems involving gravitational field, nonlocal parameter, micropolarity and elastic deformations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2021

Pascalin Tiam Kapen, Cédric Gervais Njingang Ketchate, Didier Fokwa and Ghislain Tchuen

For this purpose, a linear stability analysis based on the Navier–Stokes and Maxwell equations is made leading to an eigenvalue differential equation of the modified…

Abstract

Purpose

For this purpose, a linear stability analysis based on the Navier–Stokes and Maxwell equations is made leading to an eigenvalue differential equation of the modified Orr–Sommerfeld type which is solved numerically by the spectral collocation method based on Chebyshev polynomials. Unlike previous studies, blood is considered as a non-Newtonian fluid. The effects of various parameters such as volume fraction of nanoparticles, Casson parameter, Darcy number, Hartmann number on flow stability were examined and presented. This paper aims to investigate a linear stability analysis of non-Newtonian blood flow with magnetic nanoparticles with an application to controlled drug delivery.

Design/methodology/approach

Targeted delivery of therapeutic agents such as stem cells and drugs using magnetic nanoparticles with the help of external magnetic fields is an emerging treatment modality for many diseases. To this end, controlling the movement of nanoparticles in the human body is of great importance. This study investigates controlled drug delivery by using magnetic nanoparticles in a porous artery under the influence of a magnetic field.

Findings

It was found the following: the Casson parameter affects the stability of the flow by amplifying the amplitude of the disturbance which reflects its destabilizing effect. It emerges from this study that the taking into account of the non-Newtonian character is essential in the modeling of such a system, and that the results can be very different from those obtained by supposing that the blood is a Newtonian fluid. The presence of iron oxide nanoparticles in the blood increases the inertia of the fluid, which dampens the disturbances. The Strouhal number has a stabilizing effect on the flow which makes it possible to say that the oscillating circulation mechanisms dampen the disturbances. The Darcy number affects the stability of the flow and has a stabilizing effect, which makes it possible to increase the contact surface between the nanoparticles and the fluid allowing very high heat transfer rates to be obtained. It also emerges from this study that the presence of the porosity prevents the sedimentation of the nanoparticles. By studying the effect of the magnetic field on the stability of the flow, it is observed that the Hartmann number keeps the flow completely stable. This allows saying that the magnetic field makes the dissipations very important because the kinetic energy of the electrically conductive ferrofluid is absorbed by the Lorentz force.

Originality/value

The originality of this paper resides on the application of the linear stability analysis for controlled drug delivery.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 4000