Search results

1 – 10 of 51
Article
Publication date: 23 August 2019

Kasturi Sudam Patil and Elizabeth Rufus

The paper aims to focus on implantable antenna sensors used for biomedical applications. Communication in implantable medical devices (IMDs) is beneficial for continuous…

Abstract

Purpose

The paper aims to focus on implantable antenna sensors used for biomedical applications. Communication in implantable medical devices (IMDs) is beneficial for continuous monitoring of health. The ability to communicate with exterior equipment is an important aspect of IMD. Thus, the design of an implantable antenna for integration into IMD is important.

Design/methodology/approach

In this review, recent developments in IMDs, three types of antenna sensors, which are recommended by researchers for biomedical implants are considered. In this review, design requirements, different types of their antenna, parameters and characteristics in medical implants communication system (MICS) and industrial, scientific and medical (ISM) bands are summarized here. Also, overall current progress in development of implantable antenna sensor, its challenges and the importance of human body characteristics are described.

Findings

This article give information about the requirements of implantable antenna sensor designs, types of antennas useful to design implantable devices and their characteristics in MICS and ISM bands. Recent advancement in implantable devices has led to an improvement in human health.

Originality/value

The paper provides useful information on implantable antennas design for biomedical application. The designing of such antennas needs to meet requirements such as compact size, patients’ safety, communication ability and biocompatibility.

Article
Publication date: 30 April 2024

Abhishek Barwar, Prateek Kala and Rupinder Singh

Some studies have been reported in the past on diaphragmatic hernia (DH) surgery techniques using additive manufacturing (AM) technologies, symptoms of a hernia and post-surgery…

Abstract

Purpose

Some studies have been reported in the past on diaphragmatic hernia (DH) surgery techniques using additive manufacturing (AM) technologies, symptoms of a hernia and post-surgery complications. But hitherto little has been reported on bibliographic analysis (BA) for health monitoring of bovine post-DH surgery for long-term management. Based on BA, this study aims to explore the sensor fabrication integrated with innovative AM technologies for health monitoring assistance of bovines post-DH surgery.

Design/methodology/approach

A BA based on the data extracted through the Web of Science database was performed using bibliometric tools (R-Studio and Biblioshiny).

Findings

After going through the BA and a case study, this review provides information on various 3D-printed meshes used over the sutured site and available Internet of Things-based solutions to prevent the recurrence of DH.

Originality/value

Research gaps exist for 3D-printed conformal sensors for health monitoring of bovine post-DH surgery.

Details

Rapid Prototyping Journal, vol. 30 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 February 2009

Henna Heinilä, Jarno Riistama, Pekka Heino and Jukka Lekkala

The purpose of this paper is to present the stages for manufacturing a low‐cost miniaturized prototype device, which observes the restrictions of implantable medical devices. The…

Abstract

Purpose

The purpose of this paper is to present the stages for manufacturing a low‐cost miniaturized prototype device, which observes the restrictions of implantable medical devices. The device measures the electrocardiography. The power for the implant is received passively as the same magnetic field as data is transferred to the reader device.

Design/methodology/approach

In this manufacturing technique, only easily attachable commercial available components are used, etching is used to simply produce a low‐cost double‐sided flexible printed circuit board which is converted to 3D by folding.

Findings

The circuit board was folded into the final shape after component attachment and the final result was a compact 3D package within the specifications determined by the electronics designer. The miniaturized prototype device was successfully tested both in vitro and in vivo.

Originality/value

The manufacturing technique of the sensing device can be readily adapted to other devices that need to be miniaturized. The coatings used for electrical insulation and chemical protection and the type of adhesives used for folded packages are easily utilized in similar miniaturization prototypes. By using bare chips, the final product would have been even smaller but for prototyping it is cheaper and faster to use easily acquired and attached components. In the case of mass production, the whole new design, where bare chips with flip chip attachments, integrated passives and/or stacked 3D packages with design considerations such as electrical, thermal and mechanical engineering is justified.

Details

Circuit World, vol. 35 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 21 March 2016

Richard Bloss

The purpose of this paper is to review the dramatic entry of embedded medical sensors into the medical monitoring environment. It also examines the current range of applications…

Abstract

Purpose

The purpose of this paper is to review the dramatic entry of embedded medical sensors into the medical monitoring environment. It also examines the current range of applications that have been addressed, trends for additional applications and factors driving this movement.

Design/methodology/approach

This paper is a review of published information and papers on research as well as contact and discussions with researchers in this field at universities, manufacturers and research centers.

Findings

Microelectronics and electrochemical technologies have been a major factor in this development along with technology advancements to transmit energy and signals to and from miniature electronic devices, thus eliminating the need for stored energy and wires for transmitting information. Sensors are addressing medical issues in the heart, the brain, cancer treatment and prosthetic control. The move to implanted sensors follows development of other implanted medical devices as well as wearable sensors.

Originality/value

Readers may be very excited to learn of the many new tasks that embedded medical sensors can address and the many unique benefits that are provided to the patient and the medical staff caring for the patient.

Details

Sensor Review, vol. 36 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 29 November 2023

Rupinder Singh, Gurwinder Singh and Arun Anand

The purpose of this paper is to design and manufacture an intelligent 3D printed sensor to monitor the re-occurrence of diaphragmatic hernia (DH; after surgery) in bovines as an…

Abstract

Purpose

The purpose of this paper is to design and manufacture an intelligent 3D printed sensor to monitor the re-occurrence of diaphragmatic hernia (DH; after surgery) in bovines as an Internet of Things (IOT)-based solution.

Design/methodology/approach

The approach used in this study is based on a bibliographic analysis for the re-occurrence of DH in the bovine after surgery. Using SolidWorks and ANSYS, the computer-aided design model of the implant was 3D printed based on literature and discussions on surgical techniques with a veterinarian. To ensure the error-proof design, load test and strain–stress rate analyses with boundary distortion have been carried out for the implant sub-assembly.

Findings

An innovative IOT-based additive manufacturing solution has been presented for the construction of a mesh-type sensor (for the health monitoring of bovine after surgery).

Originality/value

An innovative mesh-type sensor has been fabricated by integration of metal and polymer 3D printing (comprising 17–4 precipitate hardened stainless steel and polyvinylidene fluoride-hydroxyapatite-chitosan) without sacrificing strength and specific absorption ratio value.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 1 October 2006

74

Abstract

Details

Sensor Review, vol. 26 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Content available
Article
Publication date: 1 July 2006

44

Abstract

Details

Sensor Review, vol. 26 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 27 February 2018

Partha Pratim Ray

Continuous glucose monitoring (CGM) is a notable invention introduced in the biomedical industry. It provides valuable information about intermittent capillary blood glucose that…

Abstract

Purpose

Continuous glucose monitoring (CGM) is a notable invention introduced in the biomedical industry. It provides valuable information about intermittent capillary blood glucose that is normally unattainable by regular clinical blood sample tests. CGM includes several progressive facilities such as instantaneous and real-time display of blood glucose level, “24/7” coverage, continuous motion of alerts for actual or impending hypo- and hyperglycemia and the ability to characterize glycemic variability. CGM allows users and physicians to visualize and diagnose more accurate and precise rate of change of glucose by capacitating small, comfortable, user-friendly sensor devices. Sometimes, this vital information is shared to the personal message box over Internet. In short, CGM is capable to inform, educate, motivate and alert (IEMA) people with diabetes. Despite the huge expectation with CGM, the available solutions have not attracted much attention among people. The huge potential of CGM in future diabetic study relies on the successful implication of the CGM. This paper aims at disseminating of state-of-the-art knowledge about existing work around the CGM.

Design/methodology/approach

This paper presents a comprehensive systematic review on the recent developments in CGM development techniques that have been reported in credible sources, namely PubMed, IEEE Xplore, Science Direct, Springer Link, Scopus and Google Scholar. Detailed analysis and systematic comparison are provided to highlight the achievement and future direction of CGM deployment.

Findings

Several key challenges are also portrayed for suitable opportunistic orientation. CGM solutions from four leading manufacturers such as Tandem, Dexcom, Abbott and Medtronic are compared based on the following factors including accuracy (% MARD); sensor lifetime, calibration requirement, smart device, compatibility and remote monitoring. Qualitative and quantitative analyses are performed.

Originality/value

This work can be a valuable source of reference and guidance for future research in this field.

Details

Sensor Review, vol. 38 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 January 2008

K. Arshak, A. Arshak, E. Jafer, D. Waldern and J. Harris

To develop a wireless sensor micro‐systems containing all the components of data acquisition system, such as sensors, signal‐conditioning circuits, analog‐digital converter…

2860

Abstract

Purpose

To develop a wireless sensor micro‐systems containing all the components of data acquisition system, such as sensors, signal‐conditioning circuits, analog‐digital converter, embedded microcontroller unit (MCU), and RF communication modules. This has now become the focus of attention in many biomedical applications.

Design/methodology/approach

The system prototype consists of miniature FSK transceiver integrated with MCU in one small package, chip antenna, and capacitive interface circuitry based on Delta‐sigma modulator. At the base station side, an FSK receiver/transmitter is connected to another MCU unit, which send the received data or received instructions from a PC through a graphical user interface GUI. Industrial, scientific and medical band RF (433 MHz) was used to achieve half duplex communication between the two sides. A digital filtering has been used in the capacitive interface to reduce noise effects forming capacitance to digital converter. All the modules of the mixed signal system are integrated in a printed circuit board of size 22.46 × 20.168 mm.

Findings

An innovation circuits and system techniques for building advanced smart medical devices have been discussed. Low‐power consumption and high reliability are among the main criteria that must be given priority when designing such wirelessly powered microsystems. Switched capacitors readout circuits have been found to be suitable for pressure sensing low‐power applications.

Research limitations/implications

The presented wireless prototype needs a second phase of development that will lead to a further reduction in both size and power consumption. Currently, the main limitation of the RF system is the number of working hours according to the selected battery.

Practical implications

The developed system was found to be useful in terms of measuring pressure and temperature in a system of either slow or fast physical change. It would be a good idea to explore the system performance in human or animal trials.

Originality/value

This paper fulfils useful information for capacitive interface circuitries and presents a new short‐range wireless system that has different design features.

Details

Microelectronics International, vol. 25 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 December 2005

A. Arshak, K. Arshak, G. Lyons, D. Waldron, D. Morris, O. Korostynska and E. Jafer

Telemetry capsules have existed since the 1950s and were used to measure temperature, pH or pressure inside the gastrointestinal (GI) tract. It was hoped that these capsules would…

1446

Abstract

Purpose

Telemetry capsules have existed since the 1950s and were used to measure temperature, pH or pressure inside the gastrointestinal (GI) tract. It was hoped that these capsules would replace invasive techniques in the diagnosis of function disorders in the GI tract. However, problems such as signal loss and uncertainty of the pills position limited their use in a clinical setting. In this paper, a review of the capabilities of microelectromechanical systems (MEMS) for the fabrication of a wireless pressure sensor microsystem is presented.

Design/methodology/approach

The circuit requirements and methods of data transfer are examined. The available fabrication methods for MEMS sensors are also discussed and examples of wireless sensors are given. Finally, the drawbacks of using this technology are examined.

Findings

MEMS for use in wireless monitoring of pressure in the GI tract have been investigated. It has been shown that capacitive pressure sensors are particularly suitable for this purpose. Sensors fabricated for wireless continuous monitoring of pressure have been reviewed. Great progress, especially using surface micromachining, has been made in recent years. However, despite these advances, some challenges remain.

Originality/value

Provides a review of the capabilities of MEMS.

Details

Sensor Review, vol. 25 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 51