Search results

1 – 10 of over 20000
Article
Publication date: 3 October 2017

Peter Benjamin Cooper, Konstantinos Maraslis, Theo Tryfonas and George Oikonomou

The purpose of this paper is to develop a model to harness occupancy sensing in a commercial hot-desking environment. Hot-desking is a method of office resource management…

1612

Abstract

Purpose

The purpose of this paper is to develop a model to harness occupancy sensing in a commercial hot-desking environment. Hot-desking is a method of office resource management designed to reduce the real estate costs of professional practices. However, the shortcoming is often in the suitability and appropriateness of allocated work environments. The Internet of Things could produce new data sets in the office at a resolution, speed and validity of which that they could be factored into desk-allocation, distributing seats based on appropriate noise levels, stay length, equipment requirements, previous presence and proximity to others working on the same project, among many others.

Design/methodology/approach

The study utilises primary data from a commercial office environment in Central London (numerical building system data and semi-structured interviews) to feed a discrete events simulator. To test the hypothesis, the authors look at the potential for intelligent hot-desking to use “work type” data to improve the distribution of individuals in the office, increasing productivity through the creation of positive “work type environments” – where those working on specific tasks perform better when grouped with others doing the same task. The simulation runs for a typical work day, and the authors compare the intelligent hot-desking arrangement to a base case.

Findings

The study shows that sensor data can be used for desk allocation in a hot-desking environment utilising activity-based working, with results that outweigh the costs of occupancy detection. The authors are not only able to optimise desk utilisation based on quality occupancy data but also demonstrate how overall productivity increases as individuals are allocated desks of their preference as much as possible among other enabling optimisations that can be applied. Moreover, the authors explore how an increase in occupancy data collection in the private sector could have key advantages for the business as an organization and the city as a whole.

Research limitations/implications

The research explores only one possible incarnation of intelligent hot-desking, and the authors presume that all data have already been collected, and while not insurmountable, they do not discuss the technical or cultural difficulties to this end. Furthermore, final examination of the productivity benefit – because of the difficulty in defining and measuring the concept – is exploratory rather than definitive. This research suggests that not only human-centric smart building research should be prioritised over energy or space-based themes but also large-scale private sector collection of occupancy data may be imminent, and its potential should be examined.

Practical implications

Findings strongly suggest that the hot-desking may cost more in lost productivity than it gains in reduced rental costs and as such many commercial offices should revaluate the transition, particularly with a view to facilitate intelligent hot-desking. Companies should begin to think strategically about the wider benefits of collecting occupancy data across their real estate portfolio, rather than reviewing use cases in silos. Finally, cities should consider scenarios of widespread collection of occupancy data in the private sector, examining the value these data have to city systems such as transport, and how the city might procure it for these ends.

Social implications

This paper raises positive and negative social concerns. The value in occupancy data suggested herein, bringing with it the implication it should be collected en mass, has a noted concern that this brings privacy concerns. As such, policy and regulation should heed that current standards should be reviewed to ensure they are sufficient to protect those in offices from being unfairly discriminated, spied or exploited through occupancy data. However, the improved use of occupancy data improving workplaces could indeed make them more enjoyable places to work, and have the potential to become a staple in company’s corporate social responsibility policies.

Originality/value

This paper fulfils an identified need for better understanding the specific uses of occupancy data in the smart building mantra. Several sources suggest the current research focus on energy and rental costs is misguided when the holistic cost of an office is considered, and concepts related to staff – although less understood – may have an order of magnitude bigger impact. This research supports this hypothesis through the example of intelligent hot-desking. The value of this paper lies in redirecting industry and research towards the considering occupancy data in smart building uses cases including – but not limited to– intelligent hot-desking.

Details

Facilities, vol. 35 no. 13/14
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 22 February 2011

Kiho Kim, Byung‐Suk Park, Ho‐Dong Kim, Syed Hassan and Jungwon Yoon

Hot‐cells are shielded structures protecting individuals from radioactive materials. The purpose of this paper is to propose a design approach for a hot‐cell simulator using…

Abstract

Purpose

Hot‐cells are shielded structures protecting individuals from radioactive materials. The purpose of this paper is to propose a design approach for a hot‐cell simulator using digital mock‐up (DMU) technology and combining Haptic guided complex robotic manipulation for assembly tasks in a virtual environment.

Design/methodology/approach

The principal reason for developing a simulator was to explore the feasibility of hot‐cell structure design and collision‐free assembly process. For this, a simulation design philosophy has been proposed that includes DMU facility offering the ability of analyzing the operations and performing complex robotic manipulations in the virtual hot‐cell environment. Furthermore, enhanced Haptic mapping for tele‐manipulation is proposed for training and guidance purposes.

Findings

From the analysis and task scenarios performed in virtual simulator, the optimal positions of the manipulators and need of (bridge transport dual arm servo‐manipulators) type were identified. Operation tasks were performed remotely using virtual hot‐cell technology by simulating the scenarios in the DMU reducing the overall operation cost and user training. The graphic simulator substantially reduced the cost of the process and maintenance procedure as well as the process equipment by providing a pre‐analysis of whole scenario for real manipulation.

Originality/value

This research tries to contribute to the virtual hot‐cell design philosophy. Tele‐operated complex robotic operations in DMU technology are performed in virtual hot‐cell. The simulator provides improved Haptic guidance with force and torque feedback enhancing the realism of virtual environment.

Details

Assembly Automation, vol. 31 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 18 October 2011

Alison Hirst

The purpose of this paper is to provide a sociological analysis of emergent sociospatial structures in a hot‐desking office environment, where space is used exchangeably. It…

5797

Abstract

Purpose

The purpose of this paper is to provide a sociological analysis of emergent sociospatial structures in a hot‐desking office environment, where space is used exchangeably. It considers hot‐desking as part of broader societal shifts in the ownership of space.

Design/methodology/approach

This analysis is based on an ethnographically‐oriented investigation, in which data collection methods used were participant‐observation and interviewing. The analysis uses Lefebvre's conceptualisation of the social production of space and draws on the urban sociology literature.

Findings

The analysis first indicates that, in hot‐desking environments, there may be an emergent social structure distinguishing employees who settle in one place, and others who have to move constantly. Second, the practice of movement itself generates additional work and a sense of marginalisation for hot‐deskers.

Research limitations/implications

The paper does not provide a generalisable theory, but suggests that loss of everyday ownership of the workspace gives rise to particular practical and social tensions and shifts hot‐deskers' identification with the organisation.

Practical implications

Official requirements for mobility may result in a new social structure distinguishing settlers and hot‐deskers, rather than mobility being spread evenly.

Originality/value

The paper contributes to the literature on organisational spatiality by focusing on the spatial practices entailed in hot‐desking, and by contextualising hot‐desking within the wider spatial configuration of capitalism, in which space is used exchangeability in order to realise greater economic returns. Rather than using the popular “nomadic” metaphor to understand the experience of mobility at work, it uses a metaphor of vagrancy to highlight consequences of the loss of ownership of space.

Details

Journal of Organizational Change Management, vol. 24 no. 6
Type: Research Article
ISSN: 0953-4814

Keywords

Article
Publication date: 6 July 2022

Mayumi Uemae, Tomohiro Uemae and Masayoshi Kamijo

The purpose of this study was to investigate the psychological response to changes in temperature and humidity near the skin, and the psychological factors of thermal discomfort.

Abstract

Purpose

The purpose of this study was to investigate the psychological response to changes in temperature and humidity near the skin, and the psychological factors of thermal discomfort.

Design/methodology/approach

The experiments involved changing the temperature and humidity from a neutral to a hot-humid environment, and vice versa, every 30 min. The psychological response to temperature (which ranged from 24 to 40°C) and humidity (which ranged from 30 to 80% relative humidity) was investigated.

Findings

The sensory scores shifted according to the direction of the change in temperature and humidity. The environment seemed to be evaluated relatively, whereby the sensory perception was dependent on the prior thermal environment. The psychological response to changes in temperature and humidity near the skin tended to shift from simple situational perceptions, such as feeling hot, to stifling and uncomfortable perceptions, and finally to the perception of dullness. Examining the psychological components revealed that the uncomfortable feeling was affected by “stifling” and “sweaty” perceptions with increasing temperature, by “stifling”, “sweaty”, and “sticky” perceptions with decreasing temperature, by “stifling”, “dull”, “sticky”, and “hot” perceptions with increasing humidity, and by “sweaty”, “dull”, and “humid” perceptions with decreasing humidity.

Originality/value

This study identified the psychological response that accompanies changes in temperature and humidity near the skin, as well as the psychological components of discomfort associated with changes in temperature and humidity. These results provide insights into the microclimate and thermal comfort of clothing.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 26 July 2019

Vikramjit Singh, Khushdeep Goyal and Rakesh Goyal

This paper aims to investigate the hot corrosion behavior of Ni-Cr and Cr3C2-NiCr coatings, deposited on T11, P91 boiler steels by detonation gun spray coating (D-Gun) process to…

125

Abstract

Purpose

This paper aims to investigate the hot corrosion behavior of Ni-Cr and Cr3C2-NiCr coatings, deposited on T11, P91 boiler steels by detonation gun spray coating (D-Gun) process to enhance high temperature corrosion resistance.

Design/methodology/approach

Hot corrosion studies were conducted in secondary super heater zone of boiler at 900 °C for 10 cycles on bare and D-Gun coated steel specimens. The microhardness and porosity values of as-sprayed coatings were measured before exposing the specimens in the boiler environment. Each cycle consisted 100 h of heating in the boiler environment followed by 20 min of cooling in air. The weight change measurements were performed after each cycle to establish the kinetics of corrosion using thermogravimetric technique. X-ray diffraction, SEM techniques were used to analyze the corroded specimens.

Findings

Uncoated boiler steel experienced higher weight loss. The Cr3C2-NiCr coating was found to be more protective than Ni-Cr coating. The phases revealed the formation of oxide scale on coated specimens, mainly consist of nickel and chromium, which are reported to be protective against the hot corrosion.

Originality/value

There is very limited reported literature on hot corrosion behavior of Ni-Cr and Cr3C2-NiCr coatings deposited on the T11 and P91 substrates by detonation gun (D-gun) spray technique. T11 and P91 alloy steels have been chosen for this study because these two alloys are used to manufacture boiler tubes used in Indian thermal power plants.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 21 May 2021

Arnaud Louis Sountong-Noma Ouedraogo, Adamah Messan, Daniel Yamegueu and Yezouma Coulibaly

A major challenge faced by West Africa is to find comfortable housing as a result of climate change and population growth. The climatic adaptation of buildings and their indoor…

Abstract

Purpose

A major challenge faced by West Africa is to find comfortable housing as a result of climate change and population growth. The climatic adaptation of buildings and their indoor environment become an essential condition for maintaining the health and productivity of the occupants. This paper proposes a model to assess the thermal comfort of naturally ventilated buildings in hot and dry climates in Burkina Faso.

Design/methodology/approach

The proposed method is an adaptive model which relies on a combination of parameters such as the operative temperature, the new effective temperature and the basic parameters of thermal comfort. It consists in proposing the zones of thermal comfort on the diagram of the humid air for each climatic region.

Findings

A decision-making tool is set up for evaluating the comfort of buildings to better consider the bio-climatic concept through a long-term comfort index. This comfort index is defined and is used to assess the degree of thermal discomfort for various types of housing. Two natural ventilation pilot buildings located in Ouagadougou were considered. The results show that the pilot building whose wall are is made of Earth blocks achieves 26.4% of thermal comfort while the building made of hollow cement block achieves 25.8% of thermal comfort.

Originality/value

The decision-making tool proposed in the present study allow building stakeholders to better and easily design, assess and improve the thermal environment of buildings.

Details

International Journal of Building Pathology and Adaptation, vol. 40 no. 2
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 1 September 1989

In 1742, the French chemist Melouin presented a paper to the French Royal Academy in which he described how a zinc coating could be applied to iron by dipping it into molten zinc…

Abstract

In 1742, the French chemist Melouin presented a paper to the French Royal Academy in which he described how a zinc coating could be applied to iron by dipping it into molten zinc. The first patents covering the ‘galvanizing’ process were taken out in France and England during the 1830's; the name being taken from that of the Italian physiologist Luigi Galvani who observed that electric current could be generated when dissimilar metals are brought into contact.

Details

Anti-Corrosion Methods and Materials, vol. 36 no. 9
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 26 August 2014

Ming Fu, Wenguo Weng and Hongyong Yuan

– The purpose of this paper is to measure the thermal insulation of protective clothing with multilayer gaps in low-level heat exposures.

Abstract

Purpose

The purpose of this paper is to measure the thermal insulation of protective clothing with multilayer gaps in low-level heat exposures.

Design/methodology/approach

Nine different combinations of protective clothing systems with multiple air gaps are used to measure the thermal insulation by a self-designed bench-scale test apparatus in different levels of an external thermal radiation of 2-10 kW/m2. The outside and inside surface temperatures of each fabric layer are also measured to calculate the local thermal insulation of each fabric layer and each air gap.

Findings

The results show that the total thermal insulation of protective clothing under thermal radiation is less than that in normal environments, and the exposed thermal radiation will worsen the total thermal insulation of the multilayer fabric systems. Air gap plays a positive role in the total thermal insulation, and thus provides the enhanced thermal protection. It is also suggested that the local resistance of the air gap closer to the external thermal radiation is more easily affected by the thermal radiation, due to the different heat transfer ways in the fabric system and the external thermal radiation.

Originality/value

Effects of air gap on the thermal insulation of protective clothing, and contribution of the local thermal resistance of each fabric layer and each air gap to the total thermal insulation.

Details

International Journal of Clothing Science and Technology, vol. 26 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 31 May 2022

Samridhi Garg, Monica Puri Sikka and Vinay Kumar Midha

Perspiration and heat are produced by the body and must be eliminated to maintain a stable body temperature. Sweat, heat and air must pass through the fabric to be comfortable…

Abstract

Purpose

Perspiration and heat are produced by the body and must be eliminated to maintain a stable body temperature. Sweat, heat and air must pass through the fabric to be comfortable. The cloth absorbs sweat and then releases it, allowing the body to chill down. By capillary action, moisture is driven away from fabric pores or sucked out of yarns. Convectional air movement improves sweat drainage, which may aid in body temperature reduction. Clothing reduces the skin's ability to transport heat and moisture to the outside. Excessive moisture makes clothing stick to the skin, whereas excessive heat induces heat stress, making the user uncomfortable. Wet heat loss is significantly more difficult to understand than dry heat loss. The purpose of this study is to provided a good compilation of complete information on wet thermal comfort of textile and technological elements to be consider while constructing protective apparel.

Design/methodology/approach

This paper aims to critically review studies on the thermal comfort of textiles in wet conditions and assess the results to guide future research.

Findings

Several recent studies focused on wet textiles' impact on comfort. Moisture reduces the fabric's thermal insulation value while also altering its moisture characteristics. Moisture and heat conductivity were linked. Sweat and other factors impact fabric comfort. So, while evaluating a fabric's comfort, consider both external and inside moisture.

Originality/value

The systematic literature review in this research focuses on wet thermal comfort and technological elements to consider while constructing protective apparel.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 28 February 2019

Timothy Oluseun Adekunle

The purpose of this paper is to examine the Summer performance, comfort, and heat stress in structural timber buildings. The research utilises building simulation as a tool to…

Abstract

Purpose

The purpose of this paper is to examine the Summer performance, comfort, and heat stress in structural timber buildings. The research utilises building simulation as a tool to investigate the performance of the case study buildings under non-extreme weather conditions.

Design/methodology/approach

The research explores three UK sites using the test reference year (TRY) weather files for the current and future weather conditions. The study focuses on the Summer performance and heat stress in non-extreme weather conditions; therefore, the Design Summer Year (DSY) weather files are not used for the simulations. The simulation data are calibrated and validated using the measured data from the field study.

Findings

The results revealed the mean predicted temperatures varied from 20.2–20.8°C for the 2000s. The mean temperatures for the 2030s ranged from 23.1 to 24.2°C. Higher temperatures are predicted at the buildings in the Southeast site than the Midlands and the Northwest sites. The results revealed that there is no significant improvement in the thermal environment when the floor area and the floor-to-ceiling height are increased. However, the study showed that the integration of different design interventions can improve the future performance and resilience of the buildings in various weather conditions.

Research limitations/implications

By applying the wet-bulb globe temperature (WBGT) and the Universal Thermal Comfort Index (UTCI) mathematical models to calculate the heat stress at the buildings, the study proposes the WBGT of 20.0°C and the UTCI of 24.1°C as possible heat stress indicators for occupants of the buildings in the 2030s.

Practical implications

On the one hand, the results revealed the maximum temperatures in some of the case study buildings exceed the comfort threshold (28°C). On the other hand, the study showed that occupants of the buildings are not prone to extreme Summertime overheating and heat stress under moderate weather conditions. However, different outcomes may be predicted if DSY weather files for the selected sites are considered.

Originality/value

This study is the first reported work to explore building simulation and mathematical equations to investigate Summer performance, comfort and heat stress indexes in timber buildings under moderate weather conditions in different regional sites in the UK.

1 – 10 of over 20000