Search results

1 – 10 of over 3000
Article
Publication date: 24 April 2024

Bahman Arasteh and Ali Ghaffari

Reducing the number of generated mutants by clustering redundant mutants, reducing the execution time by decreasing the number of generated mutants and reducing the cost of…

Abstract

Purpose

Reducing the number of generated mutants by clustering redundant mutants, reducing the execution time by decreasing the number of generated mutants and reducing the cost of mutation testing are the main goals of this study.

Design/methodology/approach

In this study, a method is suggested to identify and prone the redundant mutants. In the method, first, the program source code is analyzed by the developed parser to filter out the effectless instructions; then the remaining instructions are mutated by the standard mutation operators. The single-line mutants are partially executed by the developed instruction evaluator. Next, a clustering method is used to group the single-line mutants with the same results. There is only one complete run per cluster.

Findings

The results of experiments on the Java benchmarks indicate that the proposed method causes a 53.51 per cent reduction in the number of mutants and a 57.64 per cent time reduction compared to similar experiments in the MuJava and MuClipse tools.

Originality/value

Developing a classifier that takes the source code of the program and classifies the programs' instructions into effective and effectless classes using a dependency graph; filtering out the effectless instructions reduces the total number of mutants generated; Developing and implementing an instruction parser and instruction-level mutant generator for Java programs; the mutant generator takes instruction in the original program as a string and generates its single-line mutants based on the standard mutation operators in MuJava; Developing a stack-based evaluator that takes an instruction (original or mutant) and the test data and evaluates its result without executing the whole program.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 1 May 2024

Ashish Paul, Bhagyashri Patgiri and Neelav Sarma

Flow induced by rotating disks is of great practical importance in several engineering applications such as rotating heat exchangers, turbine disks, pumps and many more. The…

Abstract

Purpose

Flow induced by rotating disks is of great practical importance in several engineering applications such as rotating heat exchangers, turbine disks, pumps and many more. The present research has been freshly displayed regarding the implementation of an engine oil-based Casson tri-hybrid nanofluid across a rotating disk in mass and heat transferal developments. The purpose of this study is to contemplate the attributes of the flowing tri-hybrid nanofluid by incorporating porosity effects and magnetization and velocity slip effects, viscous dissipation, radiating flux, temperature slip, chemical reaction and activation energy.

Design/methodology/approach

The articulated fluid flow is described by a set of partial differential equations which are converted into one set of higher-order ordinary differential equations (ODEs) by using convenient conversions. The numerical solution of this transformed set of ODEs has been spearheaded by using the effectual bvp4c scheme.

Findings

The acquired results show that the heat transmission rate for the Casson tri-hybrid nanofluid is intensified by, respectively, 9.54% and 11.93% when compared to the Casson hybrid nanofluid and Casson nanofluid. Also, the mass transmission rate for the Casson tri-hybrid nanofluid is augmented by 1.09% and 2.14%, respectively, when compared to the Casson hybrid nanofluid and Casson nanofluid.

Originality/value

The current investigation presents an educative response on how the flow profiles vary with changes in the inevitable flow parameters. As per authors’ knowledge, no such scrutinization has been carried out previously; therefore, our results are novel and unique.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 26 December 2023

Ana Junça Silva, Leticia Mosteo and Rita Rueff

Relying on the effort-recovery model, this study aimed to test how and when a good night’s sleep increases in daily physical health. The authors hypothesized that when individuals…

Abstract

Purpose

Relying on the effort-recovery model, this study aimed to test how and when a good night’s sleep increases in daily physical health. The authors hypothesized that when individuals have a good night’s sleep, it helps them to recover their self-regulatory resources, and, in turn, these cognitive resources improve their physical health experienced at work. Furthermore, the authors argue that this will be different depending on the individuals’ levels of neuroticism; that is, the indirect relationship between sleep duration and physical health through self-regulatory resources will be stronger for individuals who score lower on neuroticism, and in contrast, the relationship will be buffered for those who score higher on neuroticism.

Design/methodology/approach

To test the hypothesized model, the authors conducted a three-wave longitudinal study with working adults (N = 262). The authors used multilevel modelling to test if neuroticism moderated the indirect relationship between sleep duration and physical health through self-regulatory resources, at both between and within-person levels.

Findings

The multilevel results showed that a good night’s sleep recovered self-regulatory resources needed to promote physical health; however, this indirect relationship was buffered for those who scored higher on neuroticism (versus lower levels of neuroticism).

Practical implications

Hence, the role of neuroticism as a potentially harming condition for employees’ physical health is pointed out.

Originality/value

The findings highlight the relevance of sleep as a recovery activity for both cognitive and physical resources experienced during the working day. However, this appears to be attenuated for employees with higher levels of neuroticism.

Details

International Journal of Organizational Analysis, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1934-8835

Keywords

Article
Publication date: 21 May 2024

Jian Wang, Yi Tan, Jingzhi Zhang and Yajuan Han

Quality function deployment (QFD) has been widely applied in new product development, but existing research on QFD has some limitations. Primarily, QFD lacks the capability to…

Abstract

Purpose

Quality function deployment (QFD) has been widely applied in new product development, but existing research on QFD has some limitations. Primarily, QFD lacks the capability to provide feedback on the satisfaction degree of customer requirements (CRs) according to the actual values of engineering characteristics (ECs). In addition, QFD does not quantitatively consider the interrelationships among ECs. Reverse QFD (R-QFD) was introduced to implement the feedback process. On this basis, this paper quantitatively considers the interrelationships among ECs in the R-QFD model and extends these relationships to encompass combinations of multiple ECs, aiming to improve the inference accuracy of the model.

Design/methodology/approach

A nonlinear regression model was established between CRs and ECs, aiming to infer the satisfaction degree of CRs based on the implementation status of ECs. This model considers the interdependencies among ECs and extends the consideration of pairwise EC correlations from every two to every fifteen. Lingo Software is utilized to seek solutions for this program. To facilitate the implementation of the program, a directive to simplify the solution has been proposed.

Findings

The experimental results indicate that the interrelationships among ECs significantly affect the inference accuracy of the R-QFD model, thereby verifying the necessity of considering higher-order interrelationships among ECs within the R-QFD framework. Based on the results from data experiments, this paper also proposes research recommendations pertaining to ECs hierarchy for varying quantities of ECs.

Originality/value

The outcomes of this study have further refined the R-QFD model, addressing its limitations of ignoring the interrelationships among ECs. This transformation elevates the R-QFD model from a relatively simple linear model to a nonlinear model formed through modeling, thereby enhancing its accuracy and applicability. In practical terms, this study provides case support for the application of the R-QFD model in manufacturing industry.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 2 May 2024

Gerasimos G. Rigatos

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1…

Abstract

Purpose

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1 are often used in the joints of a robotic manipulator. This results into an actuator with large mechanical impedance (also known as nonback-drivable actuator). This in turn generates high contact forces when collision of the robotic mechanism occur and can cause humans’ injury. Another disadvantage of electric actuators is that they can exhibit overheating when constant torques have to be provided. Comparing to electric actuators, pneumatic actuators have promising properties for robotic applications, due to their low weight, simple mechanical design, low cost and good power-to-weight ratio. Electropneumatically actuated robots usually have better friction properties. Moreover, because of low mechanical impedance, pneumatic robots can provide moderate interaction forces which is important for robotic surgery and rehabilitation tasks. Pneumatic actuators are also well suited for exoskeleton robots. Actuation in exoskeletons should have a fast and accurate response. While electric motors come against high mechanical impedance and the risk of causing injuries, pneumatic actuators exhibit forces and torques which stay within moderate variation ranges. Besides, unlike direct current electric motors, pneumatic actuators have an improved weight-to-power ratio and avoid overheating problems.

Design/methodology/approach

The aim of this paper is to analyze a nonlinear optimal control method for electropneumatically actuated robots. A two-link robotic exoskeleton with electropneumatic actuators is considered as a case study. The associated nonlinear and multivariable state-space model is formulated and its differential flatness properties are proven. The dynamic model of the electropneumatic robot is linearized at each sampling instance with the use of first-order Taylor series expansion and through the computation of the associated Jacobian matrices. Within each sampling period, the time-varying linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. An H-infinity controller is designed for the linearized model of the robot aiming at solving the related optimal control problem under model uncertainties and external perturbations. An algebraic Riccati equation is solved at each time-step of the control method to obtain the stabilizing feedback gains of the H-infinity controller. Through Lyapunov stability analysis, it is proven that the robot’s control scheme satisfies the H-infinity tracking performance conditions which indicate the robustness properties of the control method. Moreover, global asymptotic stability is proven for the control loop. The method achieves fast convergence of the robot’s state variables to the associated reference trajectories, and despite strong nonlinearities in the robot’s dynamics, it keeps moderate the variations of the control inputs.

Findings

In this paper, a novel solution has been proposed for the nonlinear optimal control problem of robotic exoskeletons with electropneumatic actuators. As a case study, the dynamic model of a two-link lower-limb robotic exoskeleton with electropneumatic actuators has been considered. The dynamic model of this robotic system undergoes first approximate linearization at each iteration of the control algorithm around a temporary operating point. Within each sampling period, this linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. The linearization process relies on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modeling error which is due to the truncation of higher-order terms from the Taylor series is considered to be a perturbation which is asymptotically compensated by the robustness of the control algorithm. To stabilize the dynamics of the electropneumatically actuated robot and to achieve precise tracking of reference setpoints, an H-infinity (optimal) feedback controller is designed. Actually, the proposed H-infinity controller for the model of the two-link electropneumatically actuated exoskeleton achieves the solution of the associated optimal control problem under model uncertainty and external disturbances. This controller implements a min-max differential game taking place between: (i) the control inputs which try to minimize a cost function which comprises a quadratic term of the state vector’s tracking error and (ii) the model uncertainty and perturbation inputs which try to maximize this cost function. To select the stabilizing feedback gains of this H-infinity controller, an algebraic Riccati equation is being repetitively solved at each time-step of the control method. The global stability properties of the H-infinity control scheme are proven through Lyapunov analysis.

Research limitations/implications

Pneumatic actuators are characterized by high nonlinearities which are due to air compressibility, thermodynamics and valves behavior and thus pneumatic robots require elaborated nonlinear control schemes to ensure their fast and precise positioning. Among the control methods which have been applied to pneumatic robots, one can distinguish differential geometric approaches (Lie algebra-based control, differential flatness theory-based control, nonlinear model predictive control [NMPC], sliding-mode control, backstepping control and multiple models-based fuzzy control). Treating nonlinearities and fault tolerance issues in the control problem of robotic manipulators with electropneumatic actuators has been a nontrivial task.

Practical implications

The novelty of the proposed control method is outlined as follows: preceding results on the use of H-infinity control to nonlinear dynamical systems were limited to the case of affine-in-the-input systems with drift-only dynamics. These results considered that the control inputs gain matrix is not dependent on the values of the system’s state vector. Moreover, in these approaches the linearization was performed around points of the desirable trajectory, whereas in the present paper’s control method the linearization points are related with the value of the state vector at each sampling instance as well as with the last sampled value of the control inputs vector. The Riccati equation which has been proposed for computing the feedback gains of the controller is novel, so is the presented global stability proof through Lyapunov analysis. This paper’s scientific contribution is summarized as follows: (i) the presented nonlinear optimal control method has improved or equally satisfactory performance when compared against other nonlinear control schemes that one can consider for the dynamic model of robots with electropneumatic actuators (such as Lie algebra-based control, differential flatness theory-based control, nonlinear model-based predictive control, sliding-mode control and backstepping control), (ii) it achieves fast and accurate tracking of all reference setpoints, (iii) despite strong nonlinearities in the dynamic model of the robot, it keeps moderate the variations of the control inputs and (iv) unlike the aforementioned alternative control approaches, this paper’s method is the only one that achieves solution of the optimal control problem for electropneumatic robots.

Social implications

The use of electropneumatic actuation in robots exhibits certain advantages. These can be the improved weight-to-power ratio, the lower mechanical impedance and the avoidance of overheating. At the same time, precise positioning and accurate execution of tasks by electropneumatic robots requires the application of elaborated nonlinear control methods. In this paper, a new nonlinear optimal control method has been developed for electropneumatically actuated robots and has been specifically applied to the dynamic model of a two-link robotic exoskeleton. The benefit from using this paper’s results in industrial and biomedical applications is apparent.

Originality/value

A comparison of the proposed nonlinear optimal (H-infinity) control method against other linear and nonlinear control schemes for electropneumatically actuated robots shows the following: (1) Unlike global linearization-based control approaches, such as Lie algebra-based control and differential flatness theory-based control, the optimal control approach does not rely on complicated transformations (diffeomorphisms) of the system’s state variables. Besides, the computed control inputs are applied directly on the initial nonlinear model of the electropneumatic robot and not on its linearized equivalent. The inverse transformations which are met in global linearization-based control are avoided and consequently one does not come against the related singularity problems. (2) Unlike model predictive control (MPC) and NMPC, the proposed control method is of proven global stability. It is known that MPC is a linear control approach that if applied to the nonlinear dynamics of the electropneumatic robot, the stability of the control loop will be lost. Besides, in NMPC the convergence of its iterative search for an optimum depends on initialization and parameter values selection and consequently the global stability of this control method cannot be always assured. (3) Unlike sliding-mode control and backstepping control, the proposed optimal control method does not require the state-space description of the system to be found in a specific form. About sliding-mode control, it is known that when the controlled system is not found in the input-output linearized form the definition of the sliding surface can be an intuitive procedure. About backstepping control, it is known that it cannot be directly applied to a dynamical system if the related state-space model is not found in the triangular (backstepping integral) form. (4) Unlike PID control, the proposed nonlinear optimal control method is of proven global stability, the selection of the controller’s parameters does not rely on a heuristic tuning procedure, and the stability of the control loop is assured in the case of changes of operating points. (5) Unlike multiple local models-based control, the nonlinear optimal control method uses only one linearization point and needs the solution of only one Riccati equation so as to compute the stabilizing feedback gains of the controller. Consequently, in terms of computation load the proposed control method for the electropneumatic actuator’s dynamics is much more efficient.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 18 April 2024

Manori Pathmalatha Kovilage, Saman Yapa and Champa Hewagamage

The effect of dynamic capabilities on operational excellence and the moderating effect of environmental dynamism on the relationship between operational excellence and dynamic…

Abstract

Purpose

The effect of dynamic capabilities on operational excellence and the moderating effect of environmental dynamism on the relationship between operational excellence and dynamic capabilities in the apparel industry in Sri Lanka were investigated while developing new psychometric scales to assess operational excellence and dynamic capacities constructs.

Design/methodology/approach

We followed the exploratory sequential research design with a mixed-method research approach, aligning with the pragmatic research philosophy. Thus, both qualitative and quantitative research methods were followed.

Findings

Dynamic capabilities positively affect operational excellence, and environmental dynamism moderates the relationship between operational excellence and dynamic capabilities in the apparel industry in Sri Lanka such that when a higher environmental dynamism exists, a weaker positive relationship exists between dynamic capabilities and operational excellence. The two main dimensions of the operational excellence construct are continuous improvement of sustainable operational performance and sustainable competitive advantages. It empirically confirmed that sensing, seizing and reconfiguring capabilities are the three main dimensions of the dynamic capabilities construct.

Research limitations/implications

This study was limited to the apparel industry in Sri Lanka. This research phenomenon should be explored in other industrial sectors worldwide to generalize the findings. The practitioners in the apparel sector may improve the organizational dynamic capabilities to achieve operational excellence and keep a strong positive relationship between dynamic capabilities and operational excellence in a highly dynamic environment if they address out-of-family situations with out-of-the-box thinking.

Originality/value

We generated two new empirical findings: (1) dynamic capabilities positively affect operational excellence, and (2) environmental dynamism moderates the relationship between dynamic capabilities and operational excellence. Also, we introduced validated new scales for assessing operational excellence and dynamic capabilities.

Details

International Journal of Productivity and Performance Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 4 January 2024

Zicheng Zhang

Advanced big data analysis and machine learning methods are concurrently used to unleash the value of the data generated by government hotline and help devise intelligent…

Abstract

Purpose

Advanced big data analysis and machine learning methods are concurrently used to unleash the value of the data generated by government hotline and help devise intelligent applications including automated process management, standard construction and more accurate dispatched orders to build high-quality government service platforms as more widely data-driven methods are in the process.

Design/methodology/approach

In this study, based on the influence of the record specifications of texts related to work orders generated by the government hotline, machine learning tools are implemented and compared to optimize classify dispatching tasks by performing exploratory studies on the hotline work order text, including linguistics analysis of text feature processing, new word discovery, text clustering and text classification.

Findings

The complexity of the content of the work order is reduced by applying more standardized writing specifications based on combining text grammar numerical features. So, order dispatch success prediction accuracy rate reaches 89.6 per cent after running the LSTM model.

Originality/value

The proposed method can help improve the current dispatching processes run by the government hotline, better guide staff to standardize the writing format of work orders, improve the accuracy of order dispatching and provide innovative support to the current mechanism.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 2 April 2024

Minyan Wei, Juntao Zheng, Shouzhen Zeng and Yun Jin

The main aim of this paper is to establish a reasonable and scientific evaluation index system to assess the high quality and full employment (HQaFE).

38

Abstract

Purpose

The main aim of this paper is to establish a reasonable and scientific evaluation index system to assess the high quality and full employment (HQaFE).

Design/methodology/approach

This paper uses a novel Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) multi-criteria framework to evaluate the quality and quantity of employment, wherein the integrated weights of attributes are determined by the combined the Criteria Importance Through Inter-criteria Correlation (CRITIC) and entropy approaches.

Findings

Firstly, the gap in the Yangtze River Delta in employment quality is narrowing year by year; secondly, employment skills as well as employment supply and demand are the primary indicators that determine the HQaFE; finally, the evaluation scores are clearly hierarchical, in the order of Shanghai, Jiangsu, Zhejiang and Anhui.

Originality/value

A scientific and reasonable evaluation index system is constructed. A novel CRITIC-entropy-TOPSIS evaluation is proposed to make the results more objective. Some policy recommendations that can promote the achievement of HQaFE are proposed.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 21 February 2024

Faguo Liu, Qian Zhang, Tao Yan, Bin Wang, Ying Gao, Jiaqi Hou and Feiniu Yuan

Light field images (LFIs) have gained popularity as a technology to increase the field of view (FoV) of plenoptic cameras since they can capture information about light rays with…

Abstract

Purpose

Light field images (LFIs) have gained popularity as a technology to increase the field of view (FoV) of plenoptic cameras since they can capture information about light rays with a large FoV. Wide FoV causes light field (LF) data to increase rapidly, which restricts the use of LF imaging in image processing, visual analysis and user interface. Effective LFI coding methods become of paramount importance. This paper aims to eliminate more redundancy by exploring sparsity and correlation in the angular domain of LFIs, as well as mitigate the loss of perceptual quality of LFIs caused by encoding.

Design/methodology/approach

This work proposes a new efficient LF coding framework. On the coding side, a new sampling scheme and a hierarchical prediction structure are used to eliminate redundancy in the LFI's angular and spatial domains. At the decoding side, high-quality dense LF is reconstructed using a view synthesis method based on the residual channel attention network (RCAN).

Findings

In three different LF datasets, our proposed coding framework not only reduces the transmitted bit rate but also maintains a higher view quality than the current more advanced methods.

Originality/value

(1) A new sampling scheme is designed to synthesize high-quality LFIs while better ensuring LF angular domain sparsity. (2) To further eliminate redundancy in the spatial domain, new ranking schemes and hierarchical prediction structures are designed. (3) A synthetic network based on RCAN and a novel loss function is designed to mitigate the perceptual quality loss due to the coding process.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 26 December 2023

Farshad Peiman, Mohammad Khalilzadeh, Nasser Shahsavari-Pour and Mehdi Ravanshadnia

Earned value management (EVM)–based models for estimating project actual duration (AD) and cost at completion using various methods are continuously developed to improve the…

Abstract

Purpose

Earned value management (EVM)–based models for estimating project actual duration (AD) and cost at completion using various methods are continuously developed to improve the accuracy and actualization of predicted values. This study primarily aimed to examine natural gradient boosting (NGBoost-2020) with the classification and regression trees (CART) base model (base learner). To the best of the authors' knowledge, this concept has never been applied to EVM AD forecasting problem. Consequently, the authors compared this method to the single K-nearest neighbor (KNN) method, the ensemble method of extreme gradient boosting (XGBoost-2016) with the CART base model and the optimal equation of EVM, the earned schedule (ES) equation with the performance factor equal to 1 (ES1). The paper also sought to determine the extent to which the World Bank's two legal factors affect countries and how the two legal causes of delay (related to institutional flaws) influence AD prediction models.

Design/methodology/approach

In this paper, data from 30 construction projects of various building types in Iran, Pakistan, India, Turkey, Malaysia and Nigeria (due to the high number of delayed projects and the detrimental effects of these delays in these countries) were used to develop three models. The target variable of the models was a dimensionless output, the ratio of estimated duration to completion (ETC(t)) to planned duration (PD). Furthermore, 426 tracking periods were used to build the three models, with 353 samples and 23 projects in the training set, 73 patterns (17% of the total) and six projects (21% of the total) in the testing set. Furthermore, 17 dimensionless input variables were used, including ten variables based on the main variables and performance indices of EVM and several other variables detailed in the study. The three models were subsequently created using Python and several GitHub-hosted codes.

Findings

For the testing set of the optimal model (NGBoost), the better percentage mean (better%) of the prediction error (based on projects with a lower error percentage) of the NGBoost compared to two KNN and ES1 single models, as well as the total mean absolute percentage error (MAPE) and mean lags (MeLa) (indicating model stability) were 100, 83.33, 5.62 and 3.17%, respectively. Notably, the total MAPE and MeLa for the NGBoost model testing set, which had ten EVM-based input variables, were 6.74 and 5.20%, respectively. The ensemble artificial intelligence (AI) models exhibited a much lower MAPE than ES1. Additionally, ES1 was less stable in prediction than NGBoost. The possibility of excessive and unusual MAPE and MeLa values occurred only in the two single models. However, on some data sets, ES1 outperformed AI models. NGBoost also outperformed other models, especially single models for most developing countries, and was more accurate than previously presented optimized models. In addition, sensitivity analysis was conducted on the NGBoost predicted outputs of 30 projects using the SHapley Additive exPlanations (SHAP) method. All variables demonstrated an effect on ETC(t)/PD. The results revealed that the most influential input variables in order of importance were actual time (AT) to PD, regulatory quality (RQ), earned duration (ED) to PD, schedule cost index (SCI), planned complete percentage, rule of law (RL), actual complete percentage (ACP) and ETC(t) of the ES optimal equation to PD. The probabilistic hybrid model was selected based on the outputs predicted by the NGBoost and XGBoost models and the MAPE values from three AI models. The 95% prediction interval of the NGBoost–XGBoost model revealed that 96.10 and 98.60% of the actual output values of the testing and training sets are within this interval, respectively.

Research limitations/implications

Due to the use of projects performed in different countries, it was not possible to distribute the questionnaire to the managers and stakeholders of 30 projects in six developing countries. Due to the low number of EVM-based projects in various references, it was unfeasible to utilize other types of projects. Future prospects include evaluating the accuracy and stability of NGBoost for timely and non-fluctuating projects (mostly in developed countries), considering a greater number of legal/institutional variables as input, using legal/institutional/internal/inflation inputs for complex projects with extremely high uncertainty (such as bridge and road construction) and integrating these inputs and NGBoost with new technologies (such as blockchain, radio frequency identification (RFID) systems, building information modeling (BIM) and Internet of things (IoT)).

Practical implications

The legal/intuitive recommendations made to governments are strict control of prices, adequate supervision, removal of additional rules, removal of unfair regulations, clarification of the future trend of a law change, strict monitoring of property rights, simplification of the processes for obtaining permits and elimination of unnecessary changes particularly in developing countries and at the onset of irregular projects with limited information and numerous uncertainties. Furthermore, the managers and stakeholders of this group of projects were informed of the significance of seven construction variables (institutional/legal external risks, internal factors and inflation) at an early stage, using time series (dynamic) models to predict AD, accurate calculation of progress percentage variables, the effectiveness of building type in non-residential projects, regular updating inflation during implementation, effectiveness of employer type in the early stage of public projects in addition to the late stage of private projects, and allocating reserve duration (buffer) in order to respond to institutional/legal risks.

Originality/value

Ensemble methods were optimized in 70% of references. To the authors' knowledge, NGBoost from the set of ensemble methods was not used to estimate construction project duration and delays. NGBoost is an effective method for considering uncertainties in irregular projects and is often implemented in developing countries. Furthermore, AD estimation models do fail to incorporate RQ and RL from the World Bank's worldwide governance indicators (WGI) as risk-based inputs. In addition, the various WGI, EVM and inflation variables are not combined with substantial degrees of delay institutional risks as inputs. Consequently, due to the existence of critical and complex risks in different countries, it is vital to consider legal and institutional factors. This is especially recommended if an in-depth, accurate and reality-based method like SHAP is used for analysis.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Access

Year

Last 6 months (3320)

Content type

Earlycite article (3320)
1 – 10 of over 3000