Search results

1 – 10 of over 2000
Article
Publication date: 12 April 2022

Weijie Zhou, Yi Zhang, Bin Yang, Xing Lei, Zhaowen Hu and Wei Wang

This study aims to investigate the microtopography transformation at a low-speed heavy-load interface with the lubrication of powder particles and its nonlinear friction effect on…

Abstract

Purpose

This study aims to investigate the microtopography transformation at a low-speed heavy-load interface with the lubrication of powder particles and its nonlinear friction effect on the sliding pair in contact.

Design/methodology/approach

Based on the universal mechanical tester (UMT) tribometer and VK shape-measuring laser microscope, comparative friction experiments were conducted with graphite powder lubrication. The friction coefficient with nonlinear fluctuations and the three-dimensional morphology of the boundary layer at the interface were observed and analyzed under different operating conditions. The effects on lubrication mechanisms and frictional nonlinearity at the sliding pair were focused on under different surface roughness and powder layer thickness conditions.

Findings

At a certain external load and sliding speed, the initial specimen surface with an appropriate initial roughness and powder thickness can store and bond the powder lubricant to form a boundary film readily. The relatively flat and firm boundary layer of powder at the microscopic interface can reduce the coefficient of friction and suppress its nonlinear fluctuation effectively. Therefore, proper surface roughness and powder layer thickness are beneficial to the graphite lubrication and stability maintenance of a friction pair.

Originality/value

This research is conducive to developing a deep understanding of the microtopography transformation with frictional nonlinearity at a low-speed heavy-load interface with graphite powder lubrication.

Details

Industrial Lubrication and Tribology, vol. 74 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 August 2010

DongLin Pu, JianHua Wu, ZhenHua Xiong, XinJun Sheng and Han Ding

The purpose of this paper is to explore the nonlinear analysis on the relay feedback technology (RFT) applied to parameters identification of servo mechanism.

Abstract

Purpose

The purpose of this paper is to explore the nonlinear analysis on the relay feedback technology (RFT) applied to parameters identification of servo mechanism.

Design/methodology/approach

In order to investigate nonlinear elements' influence on RFT, the analysis was conducted in the velocity and current control loops, respectively. The RFT algorithm for modeling servo mechanism with friction was developed to overcome the nonlinear influence. Furthermore, the results from experiments were presented to validate the analysis and illustrated the advantages of the proposed method.

Findings

The Coulomb friction and current changing are the main nonlinear influence on the RFT application in servo mechanism. The friction effects should be included to servo system modeling based on RFT.

Practical implications

Some suggestions concluded from nonlinear analysis are useful to optimize the selection of parameters in RFT. And the proposed algorithm is applicable to modeling servo mechanism with friction.

Originality/value

The nonlinear analysis in the different control loops of servo mechanism based on RFT is presented and the effective identification approach is proposed in this paper.

Details

Assembly Automation, vol. 30 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 23 October 2020

Lixin Hai, Feng Gao, Yan Li, Bo Yang and Yanyan Zhu

The nonlinear friction disturbance of the moving joint surface of the feed system can lead to the residual vibration of the system, prolong the stability time of the system and…

Abstract

Purpose

The nonlinear friction disturbance of the moving joint surface of the feed system can lead to the residual vibration of the system, prolong the stability time of the system and reduce the motion precision and machining precision of the machine tool. This paper aims to concern the vibration between joint surfaces caused by nonlinear friction.

Design/methodology/approach

The model is established from the micro and macro scale based on the LuGre model. The friction characteristics of the moving joint surface are explored. The friction experiment of GCr15 pin and 45 steel disk is designed and the influence of lubrication condition, speed, acceleration and normal load on friction characteristics are studied.

Findings

Among the drive speed, damping and stiffness, the negative gradient effect of friction, which is characterized by the difference of static and dynamic friction coefficient Δµ, is the main cause of friction vibration between moving joint surfaces. Sufficient lubrication, a proper increase of speed and acceleration, a reasonable reduction of normal load can reduce the negative gradient effect, which can weaken the vibration caused by the nonlinear friction and improve the friction characteristics of the moving joint surface.

Originality/value

In the past studies, more attention has been paid to revealing the relationship between the relative speed and friction, while the acceleration is often ignored. The negative gradient effect of friction is improved in this paper by changing the contact conditions. Research findings of this paper effectively improve the friction characteristics of the moving interface and provide the basis for restraining the nonlinear vibration between the moving interfaces.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2019-0476/

Details

Industrial Lubrication and Tribology, vol. 73 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 June 2023

Yanli Feng, Ke Zhang, Haoyu Li and Jingyu Wang

Due to dynamic model is the basis of realizing various robot control functions, and it determines the robot control performance to a large extent, this paper aims to improve the…

159

Abstract

Purpose

Due to dynamic model is the basis of realizing various robot control functions, and it determines the robot control performance to a large extent, this paper aims to improve the accuracy of dynamic model for n-Degree of Freedom (DOF) serial robot.

Design/methodology/approach

This paper exploits a combination of the link dynamical system and the friction model to create robot dynamic behaviors. A practical approach to identify the nonlinear joint friction parameters including the slip properties in sliding phase and the stick characteristics in presliding phase is presented. Afterward, an adaptive variable-step moving average method is proposed to effectively reduce the noise impact on the collected data. Furthermore, a radial basis function neural network-based friction estimator for varying loads is trained to compensate the nonlinear effects of load on friction during robot joint moving.

Findings

Experiment validations are carried out on all the joints of a 6-DOF industrial robot. The experimental results of joint torque estimation demonstrate that the proposed strategy significantly improves the accuracy of the robot dynamic model, and the prediction effect of the proposed method is better than that of existing methods.

Originality/value

The proposed method extends the robot dynamic model with friction compensation, which includes the nonlinear effects of joint stick motion, joint sliding motion and load attached to the end-effector.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 31 May 2022

Jiacai Wang, Jiaoliao Chen, Libin Zhang, Fang Xu and Lewei Zhi

The sensorless external force estimation of robot manipulator can be helpful for reducing the cost and complexity of the robot system. However, the complex friction phenomenon of…

Abstract

Purpose

The sensorless external force estimation of robot manipulator can be helpful for reducing the cost and complexity of the robot system. However, the complex friction phenomenon of the robot joint and uncertainty of robot model and signal noise significantly decrease the estimation accuracy. This study aims to investigate the friction modeling and the noise rejection of the external force estimation.

Design/methodology/approach

A LuGre-linear-hybrid (LuGre-L) friction model that combines the dynamic friction characteristics of the robot joint and static friction of the drive motor is proposed to improve the modeling accuracy of robot friction. The square root cubature Kalman filter (SCKF) is improved by integrating a Sage Window outer layer and a nonlinear disturbance observer (NDOB) inner layer. In the outer layer, Sage Window is integrated in the square root Kalman filter (W-SCKF) to dynamically adjust noise statistics. NDOB is applied as the inner layer of W-SCKF (NDOB-WSCKF) to obtain the uncertain state variables of the state model.

Findings

A peg-in-hole contact experiment conducted on a real robot demonstrates that the average accuracy of the estimated joint torque based on LuGre-L is improved by 4.9% in contrast to the LuGre model. Based on the proposed NDOB-WSCKF, the average estimation accuracy of the external joint torque can reach up to 92.1%, which is improved by 4%–15.3% in contrast to other estimation methods (SCKF and NDOB).

Originality/value

A LuGre-L friction model is proposed to handle the coupling of static and dynamic friction characteristics for the robot manipulator. An improved SCKF is applied to estimate the external force of the robot manipulator. To improve the noise rejection ability of the estimation method and make it more resistant to unmodeled state variable, SCKF is improved by integrating a Sage Window and NDOB, and a NDOB-WSCKF external force estimator is developed. Validation results demonstrate that the accuracy of the robot dynamics model and the estimated external force is improved by the proposed method.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 May 2023

Shijie Dai, Shida Li, Wenbin Ji, Ruiqin Wang and Shuyuan Liu

Considering the response lag and viscous slip oscillation of the system caused by cylinder piston friction during automatic polishing of aero-engine blades by a robotic pneumatic…

Abstract

Purpose

Considering the response lag and viscous slip oscillation of the system caused by cylinder piston friction during automatic polishing of aero-engine blades by a robotic pneumatic end-effector, the purpose of this study is to propose a constant force control method with adaptive friction compensation.

Design/methodology/approach

First, the mathematical model of the pneumatic end-effector is established based on the continuous LuGre model, and the static parameters of the LuGre model are identified to verify the necessity of friction compensation. Second, aiming at the problems of difficult identification of dynamic parameters and unmeasurable internal states in the LuGre model, the parameter adaptive law and friction state observer are designed to estimate these parameters online. Finally, an adaptive friction compensation backstepping controller is designed to improve the response speed and polishing force control accuracy of the system.

Findings

Simulation and experimental results show that, compared with proportion integration differentiation, extended state observer-based active disturbance rejection controller and integral sliding mode controller, the proposed method can quickly and effectively suppress the polishing force fluctuation caused by nonlinear friction and significantly improve the blade quality.

Originality/value

The pneumatic force control method combining backstepping control with the friction adaptive compensation based on LuGre friction model is studied, which effectively suppresses the fluctuation of normal polishing force.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 5 January 2022

Fenglin Zhu, Fan Yu Jie, Li bin and Xu Cheng Cheng

This study aims to establish the friction vibration model.

Abstract

Purpose

This study aims to establish the friction vibration model.

Design/methodology/approach

The friction vibration experiment was carried out on a pin disk friction tester. The causes of friction vibration are discussed, and the friction vibration model is established based on the energy method.

Findings

The experimental and simulation results show that the main cause of friction vibration is the nonlinear change of friction coefficient; degree of the friction vibration has a positive relationship with the friction relative velocity and normal contact positive pressure; the proposed friction vibration model is highly consistent in chaotic attractor and time-frequency distribution map and can well predict friction vibration.

Originality/value

The proposed friction vibration model is highly consistent in chaotic attractor and time-frequency distribution map and can well predict friction vibration.

Details

Industrial Lubrication and Tribology, vol. 74 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 15 September 2022

Zhiyong Wang, Yuankai Zhou and Xue Zuo

The purpose of this paper is to study the tribological effect of zinc borate ultrafine powder (ZBUP) oil additive on the running-in quality.

Abstract

Purpose

The purpose of this paper is to study the tribological effect of zinc borate ultrafine powder (ZBUP) oil additive on the running-in quality.

Design/methodology/approach

The running-in quality was assessed by friction coefficient and surface topography. Fractal parameters including fractal dimension, the width of multifractal, the multifractal difference, multifractal parameters, phase trajectory and correlation dimension were used to extract the nonlinear characteristics of surface topography and friction coefficient.

Findings

When the ZBUP additive was added, the convergence degree of the phase trajectory and the stability of the running in were higher than that of base oil. It indicates that the ZBUP additive can improve the running-in quality of sliding bearing. Besides, the ZBUP additive can shorten the running-in time. A boundary protective film, which has good friction-reducing and anti-wear effects, was generated on the surface when the ZBUP additive was added.

Originality/value

The results have a great significance to improve the running-in quality and prolong the service life of the sliding bearing.

Details

Industrial Lubrication and Tribology, vol. 74 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 January 1992

ZHI‐HUA ZHONG and JAROSLAV MACKERLE

Contact problems are among the most difficult ones in mechanics. Due to its practical importance, the problem has been receiving extensive research work over the years. The finite…

Abstract

Contact problems are among the most difficult ones in mechanics. Due to its practical importance, the problem has been receiving extensive research work over the years. The finite element method has been widely used to solve contact problems with various grades of complexity. Great progress has been made on both theoretical studies and engineering applications. This paper reviews some of the main developments in contact theories and finite element solution techniques for static contact problems. Classical and variational formulations of the problem are first given and then finite element solution techniques are reviewed. Available constraint methods, friction laws and contact searching algorithms are also briefly described. At the end of the paper, a bibliography is included, listing about seven hundred papers which are related to static contact problems and have been published in various journals and conference proceedings from 1976.

Details

Engineering Computations, vol. 9 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 15 November 2022

Liyao Song, Bai Chen, Bo Li, Rupeng Zhu and Dan Wang

The supercritical design of tail rotor drive shaft has attracted more attention in helicopter design due to its high power–weight ratio and low maintenance cost. However, there…

Abstract

Purpose

The supercritical design of tail rotor drive shaft has attracted more attention in helicopter design due to its high power–weight ratio and low maintenance cost. However, there exists excessive vibration when the shaft passes through the critical frequency. Dry friction damper is the equipment applied to the drive shaft to suppress the excessive vibration. In order to figure out the damping mechanism of the dry friction damper and improve the damping efficiency, the dynamic model of the shaft/damper system is established based on the Jeffcott rotor model.

Design/methodology/approach

The typical frequency response of the system is studied through bifurcation diagrams, amplitude-frequency characteristic curves and waterfall frequency response spectrum. The typical transient responses under frequency sweeps are also obtained.

Findings

The results show that the response of the system changes from periodic no-rub motion to quasi-periodic rub-impact motion, and then to synchronous full annular rub-impact, and finally, back to periodic no-rub motion. The slip of the rub-impact ring improves the stability of the system. Besides, the effects of the system parameters including critical dry friction force, rub-impact friction coefficient, initial clearance on the stability and the vibration damping capacity are studied. It is observed that the stability changes significantly varying the three parameters respectively. The vibration damping capacity is mainly affected by the critical dry friction force and the initial clearance.

Originality/value

Presented results provide guidance for the design of the dry friction damper.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

1 – 10 of over 2000