Search results

1 – 10 of 821
Article
Publication date: 2 March 2022

Maryam Khashij, Mohammad Hossein Salmani, Arash Dalvand, Hossien Fallahzadeh, Fatemeh Haghirosadat and Mehdi Mokhtari

This paper aims to investigation of processes for Pb2+ elimination from water/wastewater as a significant public health issue in many parts of world. The removal of Pb2+ ions by…

Abstract

Purpose

This paper aims to investigation of processes for Pb2+ elimination from water/wastewater as a significant public health issue in many parts of world. The removal of Pb2+ ions by various nanocomposites has been explained from water/wastewaters. ZnO-based nanocomposites, as eco-friendly nanoparticles with unique physicochemical properties, have received increased attention to remove Pb2+ ions from water/wastewaters.

Design/methodology/approach

In this review, different ZnO-based nanocomposites were reviewed for their application in the removal of Pb2+ ions from the aqueous solution, typically for wastewater treatment using methodology, such as adsorption. This review focused on the ZnO-based nanocomposites for removing Pb2+ ions from water and wastewaters systems.

Findings

The ZnO-based nanocomposite was prepared by different methods, such as electrospinning, hydrothermal/alkali hydrothermal, direct precipitation and polymerization. Depending on the preparation method, various types of ZnO-based nanocomposites like ZnO-metal (Cu/ZnO, ZnO/ZnS, ZnO/Fe), ZnO-nonmetal (PVA/ZnO, Talc/ZnO) and ZnO-metal/nonmetal (ZnO/Na-Y zeolite) were obtained with different morphologies. The effects of operational parameters and adsorption mechanisms were discussed in the review.

Research limitations/implications

The findings may be greatly useful in the application of the ZnO-based nanocomposite in the fields of organic and inorganic pollutants adsorption.

Practical implications

The present study is novel, because it investigated the morphological and structural properties of the synthesized ZnO-based nanocomposite using different methods and studied the capability of green-synthesized ZnO-based nanocomposite to remove Pb2+ ions as water contaminants.

Social implications

The current review can be used for the development of environmental pollution control measures.

Originality/value

This paper reviews the rapidly developing field of nanocomposite technology.

Details

Pigment & Resin Technology, vol. 52 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 8 November 2023

Ekpor Anyimah-Ackah

This study aims to examine the effect of traditional fermentation on gari’s total heavy metal and mineral nutrient content.

Abstract

Purpose

This study aims to examine the effect of traditional fermentation on gari’s total heavy metal and mineral nutrient content.

Design/methodology/approach

This study used a quantitative approach, descriptive-analytical design to baseline the risk of heavy metals and experimental design to assess the effect of traditional fermentation. Data were analyzed using descriptives, univariate and multivariate analysis.

Findings

Although gari is rich in mineral nutrients (total calcium 3.9 ± 0.1 g/kg, copper 5.5 ± 0.02 mg/kg, iron 97.1 ± 5.8 mg/kg, potassium 9.1 ± 0.29 g/kg and zinc 3.4 ± 0.11 mg/kg), the significant levels of heavy metals (total arsenic 1.2 ± 0.01, cadmium 2.5 ± 0.04, lead 1.7 ± 0.01, mercury 2.8 ± 0.01 and tin 1.7 ± 0.02 mg/kg) present are a cause for concern. The results further suggested that traditional fermentation has reductive effects on some heavy metals and stabilizing or concentrating effects on mineral nutrients.

Research limitations/implications

This paper provides evidence that traditional fermentation may have exploitable differential effects on heavy metal contaminants and mineral nutrients that should be further explored.

Practical implications

Thise study reports fermentation implications for mitigating food with high heavy metal contaminants with minimal nutrient loss.

Originality/value

This study fulfills an identified need to optimize traditional fermentation to ensure food safety and nutrient security.

Details

Nutrition & Food Science , vol. 54 no. 1
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 5 March 2024

Fateme Asadi Touranlou, Ahmad Raeesi and Mitra Rezaei

This study aims to systematically review the health risk assessment of the concentration of heavy metals in Pistacia species globally.

Abstract

Purpose

This study aims to systematically review the health risk assessment of the concentration of heavy metals in Pistacia species globally.

Design/methodology/approach

The authors systematically searched PubMed, Science Direct, Scopus and Google Scholar to identify all articles published between 1 January 2002 and 20 August 2022. A total of 33 studies met the authors’ inclusion criteria, and their data were extracted. Additionally, the potential risk to human health was assessed by calculating the target hazard quotient and hazard index for both child and adult consumers.

Findings

The estimated daily intake for heavy metals in the included studies ranged from 9.72 × 10–9 to 7.35 (mg/day) in the following order: zinc (Zn) > mercury (Hg) > iron (Fe) > lead (Pb) > copper (Cu) > aluminum (Al) > nickel (Ni) > chromium (Cr) > manganese (Mn) > cadmium (Cd) > arsenic (As) > selenium (Se) > cobalt (Co). Among the studies that investigated heavy metals in Pistacia species around the world, the non-carcinogenic risk for all species of Pistacia was determined to be less than 1, except for Pb and Hg in Pistacia lentiscus.

Originality/value

The soil near the industrial area contained excessive amounts of heavy metals, which led to the transfer of heavy metals to plants. Owing to the insufficiency of the number of studies that examined heavy metals in Pistacia species, further monitoring and investigations were recommended.

Details

Nutrition & Food Science , vol. 54 no. 3
Type: Research Article
ISSN: 0034-6659

Keywords

Open Access
Article
Publication date: 17 July 2023

Kanza Abid, Zafar Iqbal Shams, Muhammad Suleman Tahir and Arif Zubair

The presence of heavy metals in milk causes many acute and chronic physiological dysfunctions in human organs. The present study aims to investigate the heavy metals in cow's and…

1044

Abstract

Purpose

The presence of heavy metals in milk causes many acute and chronic physiological dysfunctions in human organs. The present study aims to investigate the heavy metals in cow's and buffalo's milk of two major cities, Karachi and Gujranwala, Pakistan to estimate metal intake by humans from this source.

Design/methodology/approach

In total, 48 milk samples from 2 cities were drawn from animals' udder to avoid contamination. Each sample was digested with nitric acid at 105 oC (degree Celsius) on a pre-heated electric hot plate to investigate the metals by atomic absorption spectroscopy (flame type). Air-acetylene technique analyzed chromium, cadmium and lead, and the hydride method analyzed arsenic in the milk samples.

Findings

The results revealed the highest mean lead concentration (19.65 ± 43.86 ppb) in the milk samples, followed by chromium (2.10 ± 2.33 ppb) and arsenic (0.48 ± 0.73 ppb). Cadmium was not detected in any sample, assuming cadmium's occurrence was below the detection level. The concentrations of all the metals in the samples of the two cities do not differ statistically. Lead concentrations in the buffalo's milk were higher than in cow's milk (p < 0.05). However, the concentrations of arsenic and chromium between buffalo's and cow's milk do not differ statistically. The present study reveals a lower level of metals in the milk than those conducted elsewhere. The mean concentrations of all the metals met the World Health Organization's (WHO) safety guidelines (1993).

Research limitations/implications

Although cadmium causes toxicity in the human body, cadmium could not be measured because cadmium's concentration was below the detection level, which is 1 ppb.

Practical implications

This study will help reduce the toxic metals in our environment, and the sources of heavy metals, particularly from the industrial sector could be identified. The feed and water consumed by the milking animals could be carefully used for feeding them.

Social implications

This study will help reduce the diseases and malfunction of human organs and organ systems since these heavy metals cause toxicity and carcinogenicity in humans. Arsenic and chromium cause cancer while lead causes encephalopathy (a brain disease).

Originality/value

The study reports heavy metal concentrations in the two attributes of four independent variables of raw milk samples that were scarcely reported from Pakistan.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 3 January 2023

Mattia Rapa, Marco Ferrante, Ilia Rodushkin, Cora Paulukat and Marcelo Enrique Conti

World imports of Italian sparkling wines fell by 9% in value and 5% in quantities. In view of this, the quality characterisation of these products is desirable to increase their…

Abstract

Purpose

World imports of Italian sparkling wines fell by 9% in value and 5% in quantities. In view of this, the quality characterisation of these products is desirable to increase their market value and restore their global visibility.

Design/methodology/approach

For this purpose, in this paper, heavy metals (Cd, Co, Cr, Cu, Fe, Ga, Hf, Hg, Mn, Mo, Nb, Ni, Pb, Re, Sb, Sn, Ta, Th, Tl, U, W, V, Zn, Zr), rare Earth elements (REEs) (Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tm, Yb) and isotopes ratio (208Pb/206Pb, 207Pb/206Pb, 206Pb/204Pb, 208Pb/207Pb, 87Sr/86Sr) were analysed in Italian sparkling wines with Protected Designation of Origin (PDO) certification by High Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS) and MultiCollector Inductively Coupled Plasma Mass Spectrometer (MC-ICP-MS). The samples were produced in the Veneto region, and they were compared to white and red wines from the same area.

Findings

Sparkling wines present a characteristic elemental pattern compared to white and red ones, with lower content of heavy metals and higher content in REEs. The ratio 87Sr/86Sr resulted in a powerful micro-scale geographical origins marker while Pb ratios as winemaking process one, both useful to prevent possible frauds. Multivariate data analyses, such as PCA and PLS-DA, were used to develop a model of recognition of Venetian sparkling wines.

Originality/value

The good classification of sparkling wines was achieved (95%), proving the suitable use of these analytes as markers for recognising sparkling wines and their geographical origin verification. To the best of the authors’ knowledge, this is the first study investigating heavy metals, REEs and isotopes in Venetian sparkling wine for their recognition.

Details

British Food Journal, vol. 125 no. 7
Type: Research Article
ISSN: 0007-070X

Keywords

Book part
Publication date: 18 January 2024

Robert T. F. Ah King, Bhimsen Rajkumarsingh, Pratima Jeetah, Geeta Somaroo and Deejaysing Jogee

There is an urgent need to develop climate-smart agrosystems capable of mitigating climate change and adapting to its effects. Conventional agricultural practices prevail in…

Abstract

There is an urgent need to develop climate-smart agrosystems capable of mitigating climate change and adapting to its effects. Conventional agricultural practices prevail in Mauritius, whereby synthetic chemical fertilizers, pesticides and insecticides are used. It should be noted that Mauritius remains a net-food importing developing country of staple food such as cereals and products, roots and tubers, pulses, oil crops, vegetables, fruits and meat (FAO, 2011). In Mauritius, the agricultural sector faces extreme weather conditions like drought or heavy rainfall. Moreover, to increase the crop yields, farmers tend to use 2.5 times the prescribed amount of fertilizers in their fields. These excess fertilizers are washed away during heavy rainfall and contaminate lakes and river waters. By using smart irrigation and fertilization system, a better management of soil water reserves for improved agricultural production can be implemented. Soil Nitrogen, Phosphorus and Potassium (NPK) content, humidity, pH, conductivity and moisture data can be monitored through the cloud platform. The data will be processed at the level of the cloud and an appropriate mix of NPK and irrigation will be used to optimise the growth of the crops. Machine learning algorithms will be used for the control of the land drainage, fertilization and irrigation systems and real time data will be available through a mobile application for the whole system. This will contribute towards the Sustainable Development Goals (SDGs): 2 (Zero Hunger), 11 (Sustainable cities and communities), 12 (Responsible consumption and production) and 15 (Life on Land). With this project, the yield of crops will be boosted, thus reducing the hunger rate (SDG 2). On top of that, this will encourage farmers to collect the waters and reduce fertilizer consumption thereafter sustaining the quality of the soil on which they are cultivating the crops, thereby increasing their yields (SDG 15).

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Article
Publication date: 1 January 2024

Hongya Niu, Chunmiao Wu, Xinyi Ma, Xiaoteng Ji, Yuting Tian and Jinxi Wang

This study aims to better understand the morphological characteristics of single particle and the health risk characteristics of heavy metals in PM2.5 in different functional…

Abstract

Purpose

This study aims to better understand the morphological characteristics of single particle and the health risk characteristics of heavy metals in PM2.5 in different functional areas of Handan City.

Design/methodology/approach

High resolution transmission electron microscopy was used to observe the aerosol samples collected from different functional areas of Handan City. The morphology and size distribution of the particles collected on hazy and clear days were compared. The health risk evaluation model was applied to evaluate the hazardous effects of particles on human health in different functional areas on hazy days.

Findings

The results show that the particulate matter in different functional areas is dominated by spherical particles in different weather conditions. In particular, the proportion of spherical particles exceeds 70% on the haze day, and the percentage of soot aggregates increases significantly on the clear day. The percentage of each type of particle in the teaching and living areas varied less under different weather conditions. Except for the industrial area, the size distribution of each type of particle in haze samples is larger than that on the clear day. Spherical particles contribute more to the small particle size segment. Soot aggregate and other shaped particles contribute more to the large size segment. The mass concentrations of hazardous elements (HEs) in PM2.5 in different functional areas on consecutive haze pollution days were illustrated as industrial area > traffic area > living area > teaching area. Compared with the other functional areas, the teaching area had the lowest noncarcinogenic risk of HEs. The lifetime carcinogenic risk values of Cr and As elements in each functional area have exceeded residents’ threshold levels and are at high risk of carcinogenicity. Among the four functional areas, the industrial area has the highest carcinogenic and noncarcinogenic risks. But the effects of HEs on human health in the other functional areas should also be taken seriously and continuously controlled.

Originality/value

The significance of the study is to further understand the morphological characteristics of single particles and the health risks of heavy metals in different functional areas of Handan City. the authors hope to provide a reference for other coal-burning industrial cities to develop plans to improve air quality and human respiratory health.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 27 November 2023

Sharad Sharma, Rajesh Kumar Singh, Ruchi Mishra and Nachiappan (Nachi) Subramanian

This study aims to address three research questions pertaining to climate neutrality within the supply chain of metal and mining industry: (1) How can an organization implement…

Abstract

Purpose

This study aims to address three research questions pertaining to climate neutrality within the supply chain of metal and mining industry: (1) How can an organization implement practices related to climate neutrality in the supply chain? (2) How do members of the supply chain adopt different measures and essential processes to assist an organization in responding to climate change-related concerns? (3) How can the SAP-LAP framework assist in analyzing and proposing solutions to attain climate neutrality?

Design/methodology/approach

To address the proposed research questions concerning climate neutrality, this study employs a case study approach utilizing the SAP-LAP (situation, actor, process–learning, action, performance) framework. Within the SAP-LAP framework, adopting a natural resource-based perspective, the study thoroughly examines the intricacies and interactions among existing situations, pertinent actors and processes that impact climate initiatives within a metal and mining company.

Findings

The study's findings suggest that organizations can achieve the objective of climate neutrality by prioritizing resources and capabilities that lead to reduced GHG emissions, lower energy consumption and optimal resource utilization. The study further proposes key elements that significantly influence the pursuit of climate neutrality within enterprises.

Research limitations/implications

This study is one of the earliest contributions to the development of a holistic understanding of climate neutrality in the supply chain of the metal and mining industry.

Practical implications

The study will assist practitioners and policymakers in comprehending the present circumstances, actors and processes involved in enterprises' supply networks in order to attain climate neutrality in supply chains, as well as in taking the right steps to enhance performance.

Originality/value

This study presents a climate neutrality model and provides valuable insights into emission management, contributing to the achievement of the climate neutrality objective.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 5 September 2023

Farish Armani Hamidon, Faridah Lisa Supian, Mazlina Mat Darus, Yeong Yi Wong and Nur Farah Nadia Abd Karim

The host–guest molecules are often used in various fields and applications. This paper aims to discuss the role of host–guest complexes in the textile industry, focusing on…

Abstract

Purpose

The host–guest molecules are often used in various fields and applications. This paper aims to discuss the role of host–guest complexes in the textile industry, focusing on calixarenes as a potential adsorbent for hazardous dyes. The paper begins with an introduction to nanotechnology and its many uses, including textiles.

Design/methodology/approach

The risks associated with the utilisation of dyes and its adverse effects on the environment are then also highlighted. This paper also discusses the structure and characteristics of calixarenes and their potential use as an adsorbent to extract toxic metals from aqueous solutions. The paper also explains the molecular structure of calixarenes, especially the ability of its upper and lower rims, which can be altered to yield derivatives with various selectivities for diverse guest ions and small molecules. In addition, the application of various host–guest molecules in the textiles industry to extract dyes also had been discussed.

Findings

In conclusion, the paper highlights the essential in establishing a systematic review on the significance of selective adsorbents, such as calixarenes, to isolate particular targets from diverse matrices in the textile industry.

Research limitations/implications

Only discussing several applications for several host–guest molecules.

Originality/value

The paper concisely describes various host–guest molecule applications in the textile industry, with each molecule being elaborated upon in detail.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Book part
Publication date: 5 June 2023

Hoong Sang Wong and Chen Chen Yong

This chapter provided systematic and comprehensive analysis on trawl fisheries management and conservation measures in the Straits of Malacca. Detailed analysis is conducted on…

Abstract

This chapter provided systematic and comprehensive analysis on trawl fisheries management and conservation measures in the Straits of Malacca. Detailed analysis is conducted on Malaysian fishery management framework particularly domestic country's trawl fishery status, legal structure, input-control strategies, ecosystem protection plan, pollution, law enforcement, and complementary measures that designed to reduce and prevent overfishing in the exclusive economic zone (EEZ) of Malacca Straits. Gaps and challenges found in existing trawl fisheries literature are presented followed by recommendations for improvement in the management and conservation of trawl fisheries.

Details

Pragmatic Engineering and Lifestyle
Type: Book
ISBN: 978-1-80262-997-2

Keywords

1 – 10 of 821