Search results

1 – 3 of 3
Article
Publication date: 12 April 2018

Shouxu Wang, Xiaolan Xu, Guoyun Zhou, Yuanming Chen, Wei He, Wenjun Yang, Xinhong Su and Yongshuan Hu

As a common transmission line, the microstrip line plays an important role in high-speed circuits. The purpose of this paper was to investigate the effects of the circuit design…

221

Abstract

Purpose

As a common transmission line, the microstrip line plays an important role in high-speed circuits. The purpose of this paper was to investigate the effects of the circuit design of microstrip lines on the signal integrity (SI). In addition, the influence of the type and thickness of the solder resist ink on SI was analyzed to provide guidance for the related producing process design of printed circuit boards (PCBs).

Design/methodology/approach

Microstrip line properties consisting of shape, line-width/line-space ratio, reference layer design and as-covered solder resist ink were designed to measure the insertion loss (S21) in high-speed PCB.

Findings

The study showed that the insertion loss (S21) of straight, meander, snake-shaped and wavy microstrip lines was approximately consistent. A microstrip line with width/space ratio less than 0.96 is necessary, as the differential line closing produces a mutual interference. Reference layer including the discontinuous area should be repaired by adjusting the microstrip line parameters. With regard to the solder resist ink, the insertion loss of novel solder resist ink decreased by 0.163 dB/in at 12.9 GHz and 0.164 dB/in at 14 GHz, compared with traditional solder resist ink. Accordingly, the insertion loss effectively improved at a lower thickness of solder resist.

Originality/value

This paper demonstrated that the common designing factors of line shape, line/space ratio, reference layer and solder resist influence microstrip line SI in the significant reference of designer-making PCB layout.

Details

Circuit World, vol. 44 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 16 August 2013

Yuanming Chen, Wei He, Guoyun Zhou, Zhihua Tao, Yang Wang and Daojun Luo

Pb‐free soldering challenged printed circuit board (PCB) assembly with high temperature. The purpose of this paper is to explain the failure mechanism of printed circuit board…

Abstract

Purpose

Pb‐free soldering challenged printed circuit board (PCB) assembly with high temperature. The purpose of this paper is to explain the failure mechanism of printed circuit board (PCB) assembly with solder bubbles of vias to avoid the problems of via‐drilling defects and solder joint failure.

Design/methodology/approach

The failure of PCB vias with solder bubbles was investigated through cross sections and SEM microstructure inspection, TMA measurement, moisture absorption analysis and DSC measurement. The moisture absorption and CTE of FR4 laminate matched with manufacturing requirement to avoid the effects of solder bubbles. The effects of via drilling with a dull drill bit were compared to that with a new drill bit.

Findings

The moisture absorbed inside holes of via plating layers could be exposed to induce solder bubbles during Pb‐free soldering assembly and dull drill bits should be prevented during the drilling process to avoid the no‐bearing drilling effects.

Originality/value

The failure of PCB vias is not only involved in the voiding in solder joints but manufacturing processes of PCB. The paper designs an approach to analyse the properties of PCB materials and the drilling effects of vias to find out the mechanism resulting in solder bubbles of vias. The problem of drill bits should be considered to prevent the moisture absorbed in drilling vias with defects.

Details

Circuit World, vol. 39 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 29 April 2014

Guoyun Zhou, Chia-Yun Chen, Liyi Li, Zhihua Tao, Wei He and C.P. Wong

Nickel phosphorus (Ni−P) thin-films have been electrolessly deposited in an acid-plating bath with the addition of manganese sulfate monohydrate (MSM) to achieve higher resistance…

Abstract

Purpose

Nickel phosphorus (Ni−P) thin-films have been electrolessly deposited in an acid-plating bath with the addition of manganese sulfate monohydrate (MSM) to achieve higher resistance for the application of embedded resistor with value beyond 10 KΩ. As this material is being used for fabricating embedded resistors under the addition of MSM, its resistance properties including effects of MSM concentration and plating time on resistances, temperature coefficient of resistance (TCR), and resistance tolerance of embedded resistor were investigated. The paper aims to discuss these issues.

Design/methodology/approach

The structure of fabricated Ni−P film was detected by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The properties of substrate, including the surface morphologies, glass transition process and boundary of copper pad and substrate surface, were performed by SEM, dynamic mechanical analysis and optical microscope, respectively. The resistance tolerances of embedded resistors were elaborated from the cases of Ni−P thin-film resistance tolerance and the size effects of resistors, respectively.

Findings

The fabricated film was found to be constructed with numerous Ni−P amorphous nanoparticles, which was believed to be the reason of increasing thin-film resistance. The Ni−P thin-films presented over one magnitude order of resistance increasing in the case of MSM concentration varied from 0 to 40 g/L. For the case of TCRs, Ni−P thin-films deposited with 20 g/L MSM exhibited low TCRs of within ±100 ppm/°C Before TR at temperature elevating from 40 to 160°C, indicating that this Ni−P thin-film belongs to the constant TCR materials according to the military standard. For the tolerance of embedded resistor, the tolerance contributed by Ni−P thin-film was obtained to be 9.8 percent, whereas the geometry tolerances were in the range of 0-20 percent according to the geometries of embedded resistor.

Originality/value

For Ni−P thin-film without MSM, its low resistance with around 100 ohm/sq. limit the values of resistor few KΩ and restricted its widespread application of embedded resistor with higher resistance beyond 10 KΩ. The authors introduced MnSO4 in Ni−P electroless plating process to improve the low resistance of Ni−P thin-film. The resistance was increased over one order of magnitude after added with 40 g/L MnSO4. Due to the specific structure, as this material is being used for fabricating embedded resistors, the electrical properties and its application properties to verify its appliance in embedded resistor were systematically investigated by means of SEM, TEM, XRD characterizations, TCRs, resistance tolerance analysis, respectively.

1 – 3 of 3