Search results

1 – 10 of 485
Article
Publication date: 1 March 2005

Percy Chinoy, Marc Langlois, Raj Hariharan, Mike Nelson, Anthony Cox and Tony Ridler

Embedded passives technologies can provide benefits of size, performance, cost, and reliability to high density, high‐speed designs. A number of embedded passive technology…

Abstract

Embedded passives technologies can provide benefits of size, performance, cost, and reliability to high density, high‐speed designs. A number of embedded passive technology solutions are available to the designer. Based on our experience with Rohm and Haas's thin‐film, high‐ohmic, InSiteTM embedded resistor materials (500 and 1000 Ω/sq), this paper provides some guidelines for selecting the appropriate embedded resistor technology and implementing it at a board fabricator. The design of embedded resistors, and the trade‐offs between resistor size, tolerance, and capability of board fabrication processes, are analyzed in detail. This paper also discusses selection of the appropriate embedded capacitor technology and introduces some initial results on Rohm and Haas's thin‐film, high‐Dk, InSite embedded capacitor material (200 nF/cm2).

Details

Circuit World, vol. 31 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 28 January 2014

Wojciech Steplewski, Andrzej Dziedzic, Janusz Borecki, Grazyna Koziol and Tomasz Serzysko

The purpose of this paper is to investigate the thermal behaviour of thin- and thick-film resistor with different dimensions and contacts embedded into printed circuit board (PCB…

Abstract

Purpose

The purpose of this paper is to investigate the thermal behaviour of thin- and thick-film resistor with different dimensions and contacts embedded into printed circuit board (PCB) and compare them to the similar constructions of discrete chip resistors assembled to standard PCBs.

Design/methodology/approach

In investigations the thin- and thick-film embedded resistors with the bar form in different dimensions and configurations of contacts as well as rectangular chip resistors in package 0603 and 0402 were used. In tests were carried out the measurements of dissipated power in temperature of resistor about 40°C, 70°C and 155°C. The power dissipation was calculated as a multiplying of electrical current flowing through the resistor with voltage across the resistor. The dissipation of heat generated by electrical current flowing through resistors was examined by means of the FLIR A320 thermographic camera with lens Closeup×2 and the power source.

Findings

The results show that, in case of chip resistors, the intensity of heat radiation strongly depends on dimensions of copper contact lands and also depends on the dimensions of the resistor. In case of embedded resistors, with comparable dimensions to chip resistors, they have lower ability to power dissipation, as well as the copper contact lands dimensions have lower influence. The thermal radiation through resin material is not as effective as it is in case of resistors assembled on PCB. However, the embedded thick-film resistors, especially made of paste Minico M2010, have already the similar parameters to 0402 chip resistors.

Research limitations/implications

Research shows that embedded resistors can be used interchangeably with SMD resistors it allows to open up space on the surface of PCB, but it should be taken into account the lower energy dissipation capabilities. It is suggested that further studies are necessary for accurately determining the thermal effects and investigate the structures of embedded passive components that allow for better heat management.

Originality/value

Thermal stability of embedded resistors during operation is a critical factor of success of embedded resistor technology. The way of power dissipation and heat resistance are one of the important operating parameters of these components. The results provide information about the power and the energy dissipation of embedded thin- and thick-film resistors compared to the standard surface mount technology.

Details

Circuit World, vol. 40 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 29 April 2014

Guoyun Zhou, Chia-Yun Chen, Liyi Li, Zhihua Tao, Wei He and C.P. Wong

Nickel phosphorus (Ni−P) thin-films have been electrolessly deposited in an acid-plating bath with the addition of manganese sulfate monohydrate (MSM) to achieve higher resistance…

Abstract

Purpose

Nickel phosphorus (Ni−P) thin-films have been electrolessly deposited in an acid-plating bath with the addition of manganese sulfate monohydrate (MSM) to achieve higher resistance for the application of embedded resistor with value beyond 10 KΩ. As this material is being used for fabricating embedded resistors under the addition of MSM, its resistance properties including effects of MSM concentration and plating time on resistances, temperature coefficient of resistance (TCR), and resistance tolerance of embedded resistor were investigated. The paper aims to discuss these issues.

Design/methodology/approach

The structure of fabricated Ni−P film was detected by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The properties of substrate, including the surface morphologies, glass transition process and boundary of copper pad and substrate surface, were performed by SEM, dynamic mechanical analysis and optical microscope, respectively. The resistance tolerances of embedded resistors were elaborated from the cases of Ni−P thin-film resistance tolerance and the size effects of resistors, respectively.

Findings

The fabricated film was found to be constructed with numerous Ni−P amorphous nanoparticles, which was believed to be the reason of increasing thin-film resistance. The Ni−P thin-films presented over one magnitude order of resistance increasing in the case of MSM concentration varied from 0 to 40 g/L. For the case of TCRs, Ni−P thin-films deposited with 20 g/L MSM exhibited low TCRs of within ±100 ppm/°C Before TR at temperature elevating from 40 to 160°C, indicating that this Ni−P thin-film belongs to the constant TCR materials according to the military standard. For the tolerance of embedded resistor, the tolerance contributed by Ni−P thin-film was obtained to be 9.8 percent, whereas the geometry tolerances were in the range of 0-20 percent according to the geometries of embedded resistor.

Originality/value

For Ni−P thin-film without MSM, its low resistance with around 100 ohm/sq. limit the values of resistor few KΩ and restricted its widespread application of embedded resistor with higher resistance beyond 10 KΩ. The authors introduced MnSO4 in Ni−P electroless plating process to improve the low resistance of Ni−P thin-film. The resistance was increased over one order of magnitude after added with 40 g/L MnSO4. Due to the specific structure, as this material is being used for fabricating embedded resistors, the electrical properties and its application properties to verify its appliance in embedded resistor were systematically investigated by means of SEM, TEM, XRD characterizations, TCRs, resistance tolerance analysis, respectively.

Article
Publication date: 28 January 2014

Wojciech Steplewski, Andrzej Dziedzic, Janusz Borecki, Grazyna Koziol and Tomasz Serzysko

The purpose of this paper is to investigate the influence of parameters of embedded resistive elements manufacturing process as well as the influence of environmental factors on…

Abstract

Purpose

The purpose of this paper is to investigate the influence of parameters of embedded resistive elements manufacturing process as well as the influence of environmental factors on their electrical resistance. The investigations were made in comparison to the similar constructions of discrete chip resistors assembled to standard printed circuit boards (PCBs).

Design/methodology/approach

The investigations were based on the thin-film resistors made of NiP alloy, thick-film resistors made of carbon or carbon-silver inks as well as chip resistors in 0402 and 0603 packages. The polymer thick-film resistive films were screen-printed on the several types finishing materials of contact terminations such as copper, silver, and gold. To determine the sensitivity of embedded resistors versus standard assembled chip resistors on environmental exposure, the climatic chamber was used. The measurements of resistance were carried out periodically during the tests, and after the exposure cycles.

Findings

The results show that the change of electrical resistance of embedded resistors, in dependence of construction and base material, is different and mainly not exceed the range of 3 per cent. The achieved results in reference to thin-film resistors are comparable with results for standard chip resistors. However, the results that were obtained for thick-film resistors with Ag and Ni/Au contacts are similar. It was not found the big differences between resistors with and without conformal coating.

Research limitations/implications

The studies show that embedded resistors can be used interchangeably with chip resistors. It allows to save the area on the surface of PCB, occupied by these passive elements, for assembly of active elements (ICs) and thus enable to miniaturization of electronic devices. But embedding of passive elements into PCB requires to tackle the effect of each forming process steps on the operational properties.

Originality/value

The technique of passive elements embedding into PCB is generally known; however, there are no detailed reports on the impact of individual process steps and environmental conditions on the stability of their electrical resistance. The studies allow to understand the importance of each factor process and the mechanisms of operational properties changes depending on the used materials.

Details

Circuit World, vol. 40 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 2 February 2018

Wojciech Stęplewski, Andrzej Dziedzic, Kamil Janeczek, Aneta Araźna, Krzysztof Lipiec, Janusz Borecki and Tomasz Serzysko

The purpose of this paper is to investigate the behavior of embedded passives under changing temperature conditions. Influence of different temperature changes on the basic…

133

Abstract

Purpose

The purpose of this paper is to investigate the behavior of embedded passives under changing temperature conditions. Influence of different temperature changes on the basic properties of embedded passives was analyzed. The main reason for these investigations was to determine functionality of passives for space application.

Design/methodology/approach

The investigations were based on the thin-film resistors made of Ni-P alloy, thick-film resistors made of carbon or carbon-silver inks, embedded capacitors made of FaradFlex materials and embedded inductor made in various configurations. Prepared samples were examined under the influence of a constant elevated temperature (100, 130 or 160°C) in a long period of time (minimum of 30 h), thermal cycles (from −40 to +85°C) or thermal shocks (from −40 to +105°C or from −40 to +125°C).

Findings

The achieved results revealed that resistance drift became bigger when the samples were treated at a higher constant temperature. At the same time, no significant difference in change in electrical properties for 50 and 100 Ω resistors was noticed. For all the tests, resistance change was below 2 per cent regardless of a value of the tested resistors. Conducted thermal shock studies indicate that thin-film resistors, coils and some thick-film resistors are characterized by minor variations in basic parameters. Some of the inks may show considerable resistance variations with temperature changes. Significant changes were also exhibited by embedded capacitors.

Originality/value

The knowledge about the behavior of the operating parameters of embedded components considering environmental conditions allow for development of more complex systems with integrated printed circuit boards.

Article
Publication date: 6 February 2017

Wojciech Steplewski, Andrzej Dziedzic, Janusz Borecki and Tomasz Serzysko

The purpose of this paper is to investigate the basic functional parameters of passive embedded components in printed circuit boards (PCBs) under environmental exposures such as…

224

Abstract

Purpose

The purpose of this paper is to investigate the basic functional parameters of passive embedded components in printed circuit boards (PCBs) under environmental exposures such as thermal-humidity and thermal exposure.

Design/methodology/approach

The investigations were based on the thin-film resistors made of NiP alloy, thick-film resistors made of carbon or carbon–silver inks, embedded capacitors made of FaradFlex materials and embedded inductor made in various configurations. The capacitors and thin- and thick-film resistors were tested in the climatic chamber in conditions of thermal-humidity exposure at 85°C and 85 per cent RH for 500 h. The embedded inductors were tested in two different environmental conditions: thermal-humidity exposure at 60°C and 95 per cent RH, and thermal exposure at 150°C and additionally at the temperature in the range of +25°C to +150°C.

Findings

Studies show that in the case of embedded capacitors, the changes caused by exposure to thermal-humidity are durable and lead to the capacity increase. The embedded thin-film resistors behave in the same manner, whereas the thick-film resistors were the least resistant to the conditions of exposure. Most of the polymer thick-film resistors have been damaged. The changes of coils' properties during aging are small, and what is most important is that, after some time of exposure, their parameters stabilize at a particular level. The changes resulting from the increase in temperature are typically related to the change of material resistance (Cu) of which coils are made, and as such, they cannot be avoided but they can be predicted.

Research limitations/implications

The realized studies allowed determination of the properties of the embedded passive elements with respect to specific environmental exposures. The studies show that embedded resistors can be used interchangeably with chip passive elements. It allows saving the area on the surface of PCB, occupied by these passive elements, for assembly of active elements integrated circuits (ICs) and thus enabling the miniaturization of electronic devices.

Originality/value

The knowledge about the behavior of the operating parameters of embedded components, considering the environmental conditions, allows for development of more complex systems with integrated PCBs.

Article
Publication date: 1 December 2002

Gareth D. Jones and John Lauffer

Particularly during the past ten years, the mobile communications industry has grown by orders of magnitude, fueled by digital and RF circuit fabrication improvements, new large…

Abstract

Particularly during the past ten years, the mobile communications industry has grown by orders of magnitude, fueled by digital and RF circuit fabrication improvements, new large scale circuit integration, and other miniaturization technologies that make portable equipment smaller, cheaper, and more reliable. A key area within the telecommunication industry covers base stations and switch systems. Communications providers now require systems that provide significantly increased switching capacity. Combining both increased capability with size reduction is resulting in smaller printed circuit boards (PCBs) with more components placed on them. A potential solution to this is to embed some of the components within the board. The components which would be suitable for such a transition would be passives such as resistors, capacitors and inductors. This paper describes the work done in designing and manufacturing a PCB for the telecommunications industry with embedded resistors and microvias.

Details

Circuit World, vol. 28 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 March 2004

Percy Chinoy and Marc Langlois

Printed circuit board designers face formidable challenges of increased functionality in smaller size boards, and reduced EMI in high‐speed circuits. Embedded passives technology…

Abstract

Printed circuit board designers face formidable challenges of increased functionality in smaller size boards, and reduced EMI in high‐speed circuits. Embedded passives technology can open up valuable space on the board surface while also improving the electrical performance and reliability of high density, high‐speed designs. Shipley has developed a thin‐film, high sheet resistivity (1,000 Ω/□) resistor material sold under the trade name InSite™ in response to this market need. This paper describes the manufacturing process for embedded resistors and discusses measured data on resistance values, uniformity, and thermal effects, and their impact on design rules for resistor size. Preliminary results of Shipley's thin‐film embedded capacitor technology with high capacitance densities (10 and 200 nF/cm2) are also presented.

Details

Circuit World, vol. 30 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 March 2004

Peter A. Sandborn, Bevin Etienne, Jeffrey W. Herrmann and Mandar M. Chincholkar

With the advent of new materials and technologies that enable passive components to be embedded within electronic substrates, one key question that arises is: under what…

Abstract

With the advent of new materials and technologies that enable passive components to be embedded within electronic substrates, one key question that arises is: under what circumstances (and for what type of applications) is it economically viable to consider using embedded passives? The economic issues that must be considered consist of a combination of manufacturing costs and throughputs, and non‐manufacturing life cycle costs. This paper discusses the assessment of manufacturing costs associated with embedding resistors and capacitors in printed circuit boards and provides cost modeling results for an avionics board. The discussion is extended to include optimizing the specific embedded passive content in a board and design for production modeling when embedded passives are present. Life cycle cost issues are also qualitatively discussed.

Details

Circuit World, vol. 30 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 March 2004

Tarja Rapala‐Virtanen

Increasing packaging density and the requirement for high performance electronic devices are driving high density interconnect (HDI) printed wiring board (PWB) technology towards…

Abstract

Increasing packaging density and the requirement for high performance electronic devices are driving high density interconnect (HDI) printed wiring board (PWB) technology towards utilization of the inner space of a PWB for component placement. Aspocomp has been manufacturing HDI PWBs at Salo for more than 5 years. The main focus has been on higher packaging density and on accommodating the needs of future chip packages. In volume production, cost and performance have to be balanced. As a result, manufacturing and material yields, process automation, the cost of materials and added value technologies like embedded passives are key considerations in meeting the high volume requirements of the marketplace. This paper describes how these parameters have evolved over time and how it has been possible to achieve the stringent tolerances required in the manufacturing processes.

Details

Circuit World, vol. 30 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 10 of 485